Focusing on Desirability: The Effect of Decision Interruption and Suspension on Preferences

WENDY LIU*

This research examines the phenomenon of interruptions and suspensions in decision making. It is proposed that information processing may change from a bottom-up, data-driven to a top-down, goal-directed mode after an interruption, thereby affecting preferences. In particular, in decisions involving desirability and feasibility conflicts, because desirability is a superordinate goal to feasibility, four studies found that when a decision is interrupted and later resumed, people become more likely to favor highly desirable but less feasible consumption, such as a high-risk, high-reward option or a high-quality, high-price option. A reduced focus on feasibility is found to underlie this effect.

r., m. 🕽 nr., __n_n __n __n $m_{-'}$ m n n m n -m _ . ._._ n_n,, n_ n, n, ,,, n_{-n} n m 🕻 n/ n . , . n n n $n \; , \qquad , \; \ldots \; \quad n \; . \; n_{\prime} \; . \; n_$ m 🎗 n n n n n, n (1 27).m m n, m $\mathbf{n} \quad \left(\frac{\mathbf{n}}{\mathbf{M}}, \mathbf{n} \right) = 1 + 6, \quad \mathbf{m} \quad \mathbf{m} \quad \mathbf{m} \quad \mathbf{m} \quad \mathbf{m} \quad \mathbf{m}$

John Deighton e ed a edito and Ma yF ance L ce e ed a ociate edito fo thi a ticle.

Elect onically bli hed A g 1 29, 2008

 \mathbf{n} , \mathbf{n} , \mathbf{m} $n_1 \dots n_n \dots n_n$ $n_{i,r} m_{i,r}$, $m_{i,r} n_{i,r} n_{i,r}$, $n_{i,r}$ n 2006 n n n n, . _m n . . , n ..., n n rr., n n r n _n . . , _ n , n _n . . , _ n . , . . . n . . . n n . m _. n, n m . . , . , , . . n . . . n _n _ n . . n n n n m n n n n m **k**n/n,, ... $\mathbf{m} = \mathbf{n} = \mathbf{n}$ m-r, \dots $n \cdot n \cdot m$ \mathbf{n} , \mathbf{n} , \mathbf{n} , \mathbf{n} , \mathbf{n} r , _m n, _ n. r.. n . n n \mathbf{n} , \mathbf{m} , \mathbf{m} , \mathbf{n} $n = m \cdot n = n \cdot \dots \cdot n$ n . . . n . . . _n/ m . n_{-} m.

THEORETICAL BACKGROUND

 $E \quad , \quad n \quad , \quad \dots \quad , \quad n \quad , \quad n \quad , \quad m \quad , \quad \dots \quad$ \mathbf{n}_{r} , \mathbf{n} , \dots , \mathbf{n} , \dots , \mathbf{n} , \dots $m \ \ \boldsymbol{R} \ \boldsymbol{n} \ , \qquad \dots \ \boldsymbol{m} \ \boldsymbol{n} \ (1 \ \ \boldsymbol{7} \) \ \boldsymbol{m} \qquad \dots \ \boldsymbol{n} \ \dots \ \boldsymbol{n} \ \dots \ \boldsymbol{n}$ \mathbf{n} , \mathbf{n} , \mathbf{n} , \mathbf{n} , \mathbf{n} . .'. m ._ ... n . n n _ n . .. m , .. _nv . n . _ -_ 1 . n_1, n_2, \dots, n_r n_r n_r \mathbf{m} ..., \mathbf{n} ..., \mathbf{n} ..., \mathbf{n} ..., \mathbf{n} ..., \mathbf{n} ..., \mathbf{n} r, , ...- ... n m . . . m . . . , - n, r ...- .. . m .

Bottom-U, Data-Dien e To-Down, Goal-Di ected P oce ing. n m , . . . m-, n (H, . . . n = 1 n = 1 n = 1 n = 1 n = 1. , \mathbf{n} , . \mathbf{n} \mathbf{n} m-, n 1 60, k n m n 1 73). , , n, m $,\quad n_{\text{eff}},\quad n_{\text{eff}}$ \mathbf{n}_{r} \mathbf{n}_{r} .

 $\mathbf{n} = \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{n}$ m. n. n', ..., n, ..., n, ..., nn = n + m \mathbf{m}_{1} , \mathbf{n}_{2} , \mathbf{n}_{3} , \mathbf{m}_{4} , \mathbf{m}_{5} , \mathbf{m}_{5} , \mathbf{m}_{5} , \mathbf{m}_{5} $1 \cdot n_{1} \cdot n_{2} \cdot n_{3} \cdot n_{4} \cdot n_{5} \cdot$ $(n_1, \dots, n_{n_1}, \dots, n_{n_1}, \dots, n_{n_n}, \dots, n_{n_n}$ $\ldots \ldots \ldots n \ \underline{n} \ \underline{n} \ldots \underline{n} \ \underline{n} \ \underline{n} \ldots \underline{n} \ \underline{n} \ \underline{n} \\$, **n** , ... , **m**-, , , , ... **n.** \mathbf{n} , \mathbf{n}

 \mathbf{m} , \mathbf{n} , \mathbf{r} , \mathbf{n} , \mathbf{r} , \mathbf{n} , \mathbf{n} , \mathbf{r} , \mathbf{r} , \mathbf{n} , \mathbf{n} .. \mathbf{n} . \mathbf{k} . \mathbf{n} ... \mathbf{n} ... \mathbf{n} ... \mathbf{n} ... \mathbf{n} ... \mathbf{n} ... , ... **n** ..., *r* . **n**. _n . m , _ n . -m , n ... n ... , / ... , / ... , n ... n ... , ... , / ... , n ... n .. \mathbf{n} \mathbf{n} n', $\mathbf{m} = \mathbf{m} \cdot \mathbf{n} \cdot$, ... n'. _n .. n rr..r. m rr _ __/ --

 n
 n'
 n'
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n

De i ability and Fea ibility of Action. www. common and the state of th 1 m n n 1 m n 2003). n ... n, m, n, min, n m i n, n \dots n n 2002).

 $\mathcal{L}_{\mathcal{A}}(r) = (-1, -1)^{n} \cdot (n + 1)^{n} \cdot (n + 1)^{n$.mm ___ (, ,) , , , , , , , , m , -, (__, -, \mathbf{n} , $\mathbf{L} \cdot \mathbf{m} \cdot \mathbf{n} \cdot \mathbf{n} = \mathbf{1} \cdot \mathbf{s} \cdot \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{n}$

FIGURE 1

THEORETICAL MODEL

STUDY 1: CHOOSING A HIKING DESTINATION

. _ , n , _, n

.... n m & n m ... , _nr , _ mm n _ _ ... , n _ ... , n _ _ .r , _ _ ... n. (62% m n. n.n.) (51%) n (2° %) n , r , ... , . , . , . , . . , . . nr 40 m m m n ... **n** n ...

FIGURE 2

ILLUSTRATION OF THE DECISION INTERRUPTION PROCEDURE

H .,, ... n. n. n. n. n. n. n. n. (, n-n a_{r} , a_{r} , a, m, , ...

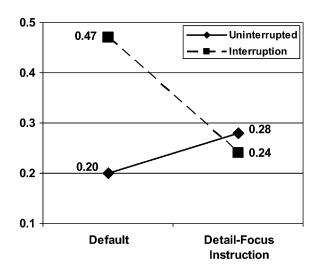
.

n (B p 1.14, p .01). (a) \underline{n} \underline{n} \underline{n} \underline{n} \underline{n} \underline{n} \underline{n} \underline{n} \underline{n} \ldots \mathbf{n} \mathbf{n} \ldots \ldots \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} $\ldots = n \ldots r, \ldots = n \ldots - n \ldots - r \ldots r \ldots n \ldots \ldots$ $\mathbf{m} \cdot \mathbf{n}$ $\mathbf{n} \cdot \mathbf{n}$ $\mathbf{n} \cdot \mathbf{n}$ $\mathbf{n} \cdot (M_{\mathrm{nn}} \mathbf{p} 5.74, M_{\mathrm{n}} \mathbf{p})$ 5. 7rF < 1). H ..., n = n, n = n $(M_{nn} p 4.53, M_n p)$ 3. * • F(1, 124) p 4.04, p .05).<u>n</u> ..., <u>n</u>, ..., <u>n</u>_ n... <u>m</u> -.r. n. ...m. r., ...m.n. n., .r., ... n., $\mathbf{n}_{\cdot,i}$ $\mathbf{n}_{\cdot,i}$ $\mathbf{n}_{\cdot,i}$ $\mathbf{n}_{\cdot,i}$ $\mathbf{n}_{\cdot,i}$ $\mathbf{n}_{\cdot,i}$ $\mathbf{n}_{\cdot,i}$ (Bp-1.42,<0.0001) , (Bp-1.42,<0.0001) , (Bp-1.42,<0.0001)n. m n n n n n (B p .64, p .26).

n = n n = n n = n, _ n _n , r . n mn n n ... (. n ... n . (a, b, b), (a, b, b), (a, b), . m 🐧 n. . . n n m n, n n-, ..., n __, _n, r, r, r, n n __, ..., n $\ldots \underline{\quad n\quad \ldots \quad ,\quad \quad \ldots \quad n\quad \quad n\quad \ldots \quad n$

.

_, , , , _ n


. _n .m _ n , n , n m 🐧 . . . _ n . _ . _ n-...r ... \mathbf{n} \mathbf{n} ... $n = m_{\text{tot}} \quad n_{\text{tot}} \quad n_{\text{tot}} \quad r_{\text{tot}} \quad$.n _ , . , _ , , n , , n _ n , . , . . n , m_{1} , m_{2} , m_{3} , m_{4} , m_{4} , m_{5} n_1 n_2 n_3 n_4 n_4 m = 100 m = 100

. . . .

.

 $n = n = \dots \text{, } \dots = n \text{, } n = n = \dots \text{, } n = n = \dots \text{, } n = n$ \mathbb{L}^{r} \mathbb{N}_{r} \mathbb{L}^{r} \mathbb{N}_{r} \mathbb{N}_{r} $r_n = n_n + r_n + n_n + n_n$. 6, p .06, M _{/ n} p 34%, M _{/ n} p 26%). m n , H H -1.45, p .05). $M_{\rm n}$ p 47% $^{\prime}$ ²(1) p 7.46, p .01). H , n $M_{n,n}$ $M_{n,n}$ $M_{n,n}$ $M_{n,n}$ $M_{n,n}$

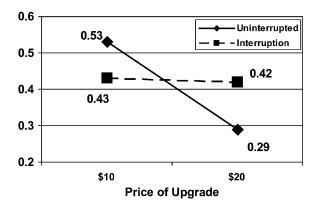
FIGURE 3 STUDY 3 RESULTS

_, , , , _ n

STUDY 4: DECISION INTERRUPTION AND PRICE SENSITIVITY

. _ / n . _/ n

 $\dots \quad \underline{n} \quad \underline{n} \quad \dots \quad \underline{n} \quad \dots \quad \underline{n} \quad \underline{n} \quad \underline{n} \quad \underline{n} \quad \dots \quad \underline{n}$. , n _, . , n , . , , , , . , m_ . . _ , n , . \$50,, .,. . . , .,.., n, . . <u>.</u>n n m **k** n r, ... n, n ... n ... n ... m m **n** . . n ___ _n, ..., , _n, _n, ..., _n, _n _n, _n, _, n .n ... n



 \mathbf{n} ..., \mathbf{n} \mathbf{n} ..., \mathbf{n} ..., \mathbf{n} ... n, m, n, n, n, m, n, n, m, n, n n m nn 🕡 ., _n ..., _n _ _ _ n . . . - \mathbf{n}_{i} , \mathbf{n}_{i} , \mathbf{n}_{i} , \mathbf{n}_{i} , \mathbf{n}_{i} , \mathbf{n}_{i} $\mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{n}, \mathbf{n}_{n}, \dots, \mathbf{r}_{n}, \dots, \mathbf{n}_{n}, \dots, \mathbf{n}_{n}$ n \$20, n \$20, n n n n n m

.

_, , , , , _ n

FIGURE 4
STUDY 4 RESULTS

GENERAL DISCUSSION

 $oldsymbol{A}_{i_1,\ldots,i_n}$, $oldsymbol{n}_{i_1,\ldots,i_n}$, $oldsymbol{n}_{i_1,\ldots,i_n}$, $oldsymbol{n}_{i_1,\ldots,i_n}$, $oldsymbol{n}_{i_1,\ldots,i_n}$ m_{l} ... n n . . . n nn n n n n m n n \overline{M} m n n n m n n (2007), ... n n \overline{M} \overline{M} ... $\overline{$. . n . . __ (, ., . _ n, . m , . m). H n m n 1 . , 2002), m s \dots n m \mathbf{R} n, m

m5 5 (5)4 5.1(44)70.2(5)70.5 - n m m $\frac{n}{2}$ n $\frac{n}{2}$ n $\frac{n}{2}$ $\frac{n}{2}$

 $n, \dots, n = \dots, n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots, m = n = \dots, m = \dots$ $\mathbf{M} \mathbf{n} = \mathbf{n} \cdot \mathbf{$ n_n ... m_3 ...

 $\mathbf{n} \dots \mathbf{r} \dots \mathbf{n} \dots \dots \mathbf{n} \dots \mathbf{r} \dots \mathbf{n} \dots \mathbf{n} \dots \mathbf{r} \dots \mathbf{r}$. m . . . n . . . n . . . m . / , . r , _ , _ , . _ , n , _ n, r m, , _ n.

n ... n (K n m n 1 ..., n n) 1. . .).

\overline{M} , \mathbf{n} , \mathbf{r} , \mathbf{n} , \mathbf{m} , \mathbf{r} , \mathbf{n}

 $\mathcal{L}_{\mathcal{L}}$ $\mathcal{L}_{\mathcal{L}}$

 $1 \quad , \quad m \quad , \quad , \quad \quad r \quad \dots \quad \underline{n} \quad \dots \\ r \quad \dots \quad r \quad \dots \quad r \quad \dots \quad \underline{r} \quad \dots \quad \underline{r} \quad \dots \quad \dots \quad \underline{r}$ \mathbf{n} , \mathbf{n} , \mathbf{n} , \mathbf{n} , \mathbf{n} , \mathbf{n} $\mathbf{n} - \mathbf{m}_1 \dots \dots \mathbf{n}_{-n} \dots \mathbf{n}_{-n}$.n , n.

REFERENCES

keting, 63 (4), 1 32.

Jo nal of Pe onality and Social Pychology, 51 (6), 1173 * 2.

n, n E. (160), Conflict, A o al and C io ity,

 \overline{M} ... -H ... \overline{M} ... $\overline{$ 233 40.

m n, m ..., m n ... n (1 ...),
n ..., m n ... n (1 ...),
me Re ea ch, 25 (m ...), 1.7 217.
E ... (1 64), n ..., n ...
letin, 62 (5), 30 22.

me

... **1**, m., n., k., (1.3), ... n., n. n. n n n M n n M M , Jo nal of Exe imental P ychology: Lea ning, Memo y, and Cognition, 1 (5), 1211 26.

 $H_{r,n}$, n . (1, 6), A_r n . n n n n m . . . , Jo nalof Ma keting Re ea ch, 23 (3), 1 212.

m tion: Contem o a y Pe ecti e on Con me Moti e, Goal, and De i e, . . . n . . . , n \overline{M} 3, n \overline{M} 3.

n n, M n m M n n m M n n m Jo nal of Conme Re ea ch, 11 (m), 741 53.

K n m n, n (1 73), Amention and Effo t E n n -H (1 ...), H. n., n Well-Being: The Fo ndation of Hedoni tic P ychology, . n K n m nE

, 3 25.

P ychology of Action: Linking Cognition and Moti ation to

of Pe onality and Social P ychology, 75 (1), 5 1.

Lea ning, Memo y, and Cognition, 24 (2), 350 61.

Ame ican P ychologi 1, 44 (12), 146 y 1. m , ... n n ... (2005), ... m n n n ... Jo nal of Con me Re ea ch, 32 (m), 3 6 404.

Jo nal of Con me Re ea ch, 32 (), 504 12.

A - n m- (1,), Jo nal of Con me Re ea ch, 16 (m), 3.

n, n n m . m n (2004), $\mathbf{3}$ n n m n- n \mathbf{A} n n Blackwell Handbook of J dgment and Deci ion Making, . , H n B . K , , 110 32.

364 76.

N. K. nn

H. M. n

(1 7), m m n n m

(1 7), m m Social P ychology B lletin, 23 n , n A n n n n , Pe onality and Social P ychology B lletin, 23 (3), 24 57.

m n, n Well-Being: The Fo ndation of Hedoni tic Pychology, . n K n m n,E n ., n

, Jo nal of

Ma keting Re ea ch, 2 (3), 3 1 5.

 $m_1 n_2 = n A_1 (1 - 6), \quad E m_2 = 0$ n n, P ychological B lletin, 11 (1), 3 22.

n, M (1, 5), n m kn r E mE r n m kn r m n , Jo nal of Conme Re ea ch, 12 (1), 31 46.

, ... n ... m n (2000), m ... n ... n ... Jo nal of Pe onality and Social P ychology, 7 (6), 76, ... (2003), m n, P ychological Re iew, 110 (3), 403 21.

m n , P ychological Re iew, 4 (1), 3 15. n A n n n, Jo nal of Pe onality and Social

P ychology, 57 (4), 660 71.

H n , n, P ychologi che Fo ch ng, , 1×5 .