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system, being used in a large number of electoral contests.1 Its proponents (for
instance Brams 1980; Brams and Fishburn 1978, 1981, 2005) have discussed
several advantages that it has over other electoral systems, and have even sug-
gested that it is “the electoral reform of the twentieth century”.

One advantage that AV is supposed to have over other voting systems is
that it helps select the “strongest” candidate. Of course, the notion of what is
the strongest candidate is not always well defined. But, if a candidate beats all
other candidates in pairwise contests — that is, if it is a Condorcet winner —
then it is intuitive to label this as the strongest candidate. It is known that plu-
rality rule and several other systems will sometimes fail to elect the Condorcet
winner. However, Fishburn and Brams (1981) prove that if a Condorcet winner
exists then the AV game has a Nash equilibrium in undominated strategies that
selects the Condorcet winner. A main purpose of this paper is to examine the
“tendency” of AV to select Condorcet winners when they exist.

In order to do so, we use the model of one stage voting procedures developed
by Myerson and Weber (1993) to analyse various features of AV games. Since
Nash equilibrium has no predictive power in voting games such as the ones
induced by AV when there are three or more voters, we focus on refinements of
Nash equilibrium. In particular, a first example demonstrates that the perfect
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the highest probability and the Condorcet winner with the lowest probability.
Under plurality rule, for the same preferences, there is only one stable set and,
in this stable set, the Condorcet winner is elected with probability 1.

Our paper does not contain any general results. However, the examples do
suggest that it is important to subject the received wisdom about AV to closer
scrutiny.

2 The framework

Let C = {1, ..., K} be the set of candidates, and N = {1, ..., n} be the set of voters.
Under Approval Voting (AV), a ballot is a subset of the set of candidates. The
approval voting rule selects the candidate receiving the maximum number of
votes or “approvals”. In case two or more candidates get the maximum number
of votes, ties are broken by an equi-probable lottery on the set of tied candi-
dates. Hence, every voter has 2K pure strategies, corresponding to the set of
vectors with K components, where each entry is either zero or one.3

The strategy space of each player is

� = �(V)

where V = {0, 1}K is the set of pure strategies.
In order to determine the winner, we do not need to know the ballots cast by

each voter - it is enough to know their sum. Given a pure strategy vector v ∈ Vn,

let ω =
n∑

i=1
vi. Clearly ω is a K-dimensional vector, and each coordinate repre-

sents the total number of votes obtained by the corresponding candidate. Then,
denoting by p (c | v) the probability that candidate c is elected corresponding
to v, we have

p (c | v) =
{

0 if ∃m ∈ C s.t ωc < ωm
1
q if ωc ≥ ωm ∀m ∈ C and # {d ∈ C s.t. ωc = ωd} = q. (1)

Each voter i ∈ N has a VNM utility function characterized by ui : C → �, with
ui

c representing the payoff that player i gets if candidate c is elected. Hence,
given the utility vectors {ui}i∈N , we have a normal form game. For each pure
strategy combination v, the payoff of player i is given by

Ui (v) =
∑

c∈C

p (c | v) ui
c. (2)

3 A “one” in the kth component denotes voting for candidate k.
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Clearly, we can extend (1) and (2) to mixed strategies. Under a mixed strategy
σ we have

p (c | σ) =
∑

v∈V

σ (v) p (c | v)

and

Ui (σ ) =
∑

c∈C

p (c | σ) ui
c,

where, as usual, σ (v) denotes the probability of the (pure) strategy combination
v under σ .

Since the election rule depends only upon the sum of the votes cast, the
payoff functions and the best reply correspondences also have this property.
Hence, the analysis will often refer to the following set:

�−i =




ω−i | ∃v ∈ Vn s.t.

∑

j �=i

vj = ω−i





.

It is easy to see (cf. Brams and Fishburn 1978) that an undominated strategy
always approves the most preferred candidate(s) and does not approve the least
preferred one(s).

3 Example 1

We show here that in the example below, perfection is not an appropriate con-
cept since the set of perfect equilibria includes strategy n-tuples (and induced
outcomes) which do not survive iterated elimination of dominated strategies.

Example 1 There are six voters and three candidates. Utilities are given by

u1 = u2 = (3, 1, 0), u3 = u4 = (0, 3, 1), u
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is an undominated equilibrium, leading to the election of the third candidate.
We now show that c is a perfect equilibrium.

Proposition 2 In the AV game for example 1, c is a perfect equilibrium.

Proof Consider the following completely mixed strategy combination σε , where
ξi denotes the mixed strategy of player i which assigns equal probability to all
his pure strategies.

σε
i = (1 − 8ε2)(1, 0, 0) + 8ε2 (ξi) i = 1, 2

σε
i = (1 − 8ε2)(0, 1, 1) + 8ε2 (ξi) i = 3, 4

σε
i = (1 − ε − 7ε2)(0, 0, 1) + (ε − ε2) (1, 0, 0) + 8ε2 (ξi) i = 5, 6

It is easy to see that, for ε sufficiently close to zero, this is an ε -perfect equi-
librium. Suppose all voters other than i choose the strategies prescribed by c.
Then, the two undominated strategies of voter i are equivalent. Since for ε going
to zero, the probability of player 5 (or 6) to tremble towards (1, 0, 0) is infinitely
greater than the probability of any other “mistake”, due to the trembling of one
or several players, it is enough to check that in this event the limiting strategy
is preferred to the other undominated strategy.

Hence, for player 1, the relevant contingency which allows him to discrimi-
nate between his two undominated strategies is when the behavior of the others
is summarized by the vector ω−1 = (2, 2, 3). Since

U1((1, 0, 0) | (2, 2, 3)) = 3
2

>
4
3

= U1((1, 1, 0) | (2, 2, 3))

approving only the most preferred candidate is the best reply to σε for player
1. The same statement obviously applies for player 2.

For player 3, the relevant contingency in order to discriminate between his
two undominated strategies is given by ω−3 = (3, 1, 2). Since

U3((0, 1, 1) | (3, 1, 2)) = 1
2

> 0 = U3((0, 1, 0) | (3, 1, 2)),

(0, 1, 1) is the best reply to σε. The same statement is true for player 4.
For player 5, the relevant event is given by ω−5 = (3, 2, 2) with

U5((0, 0, 1) | (3, 2, 2)) = 3
2

>
4
3

= U5((0, 1, 1) | (3, 2, 2)).

Hence (0, 0, 1) is the best reply to σε, and the same holds for player 6.
Therefore, {σε} is a sequence of ε -perfect equilibria. Since c is the limit of

σε, it is perfect. 	

We now study the strategy combination

e = (
(1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1)

)

in which each voter approves only his most prefered candidate and that results
in a complete tie between the three candidates.
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Proposition 3 In the AV game for example 1, let e be the strategy profile in which
each voter approves only his most prefered candidate; e is the unique sophisticated
equilibrium, moreover {e} is the unique stable set of this game, hence survives
any sequence of elimination of weakly dominated strategies.

Proof Each voter has only two undominated strategies — approving only his
most preferred candidate or approving the first two candidates in his prefer-
ence ranking. Once all the dominated strategies have been eliminated, we have
a reduced game with the following pure strategy sets:

V′i = {(1, 0, 0), (1, 1, 0)} i = 1, 2

V′i = {(0, 1, 0), (0, 1, 1)} i = 3, 4

V′i = {(0, 0, 1), (0, 1, 1)} i = 5, 6

In this reduced game, the last four voters have a unique dominant strategy
— to approve only the most preferred candidate. For instance, consider player
3. In each ω−3 the first candidate gets two votes while the second gets at least
one and the third at least two. Hence, except for ω−3 = (2, 1, 2), the approval
of only the second candidate is either equivalent to the other strategy, since
both lead to the election of the same candidate, or it is preferred. Moreover, if
ω−3 = (2, 1, 2), the strategy (0, 1, 0) results in all the 3 candidates being elected
with equal probability. This yields an expected utility of 4

3 . If strategy (0, 1, 1) is
played, then candidate 3 is elected with probability one. Since this gives voter 3
a utility of 1, (0, 1, 0) dominates (0, 1, 1).

The same argument applies to the fourth voter and a symmetric one to the
last two voters. Hence, we can further reduce the game by eliminating the strat-
egy vi = (0, 1, 1) for i = 3, 4, 5, 6. In this game, player 1 (resp. 2 ) can face only
two circumstances, namely ω−1 = (1, 2, 2) or ω′

−1 = (1, 3, 2). In the latter case,
his two strategies are equivalent since both lead to the election of the second
candidate; in the former case, (1, 0, 0) is preferred to (1, 1, 0), giving a utility of
4
3 instead of 1. Hence (1, 0, 0) is dominant for player 1 (resp. 2). Thus, iterated
elimination of dominated strategy isolates the equilibrium e where each voter
approves only his most preferred candidate.

Notice that e is strict, and hence, isolated. This implies that {e} is the unique
Mertens-stable set of the game.4 This in turn implies that e survives any sequence
of elimination of dominated strategies. 	


The above results, namely that c is a perfect equilibrium but only {e} is a
stable set, holds for every game with the same preference order and such that,
for every voter, the difference in utility between the most preferred candidate
and the second preferred one is greater than the difference between the second
and the least preferred one.

4 See Mertens (1989) for a definition of this concept. We just recall that stable sets, which are
connected set of perfect equilibria, always exist and that every stable set contains a stable set of
every game obtained by iterated elimination of dominated strategies. These properties directly
imply the claim.
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Furthermore, the unique strategy combination surviving iterated elimination
of dominated strategies elects all the three candidates with the same probabil-
ity. In other words, the Condorcet loser (candidate 1) is elected with the same
probability as the Condorcet winner (candidate 2)!

4 Example 2

In this section, we propose a more striking example in which sophisticated
voting implies that nobody approves the Condorcet winner.

Example 2 There are three voters and four candidates. Utilities are given by

u1 = (10, 0, 1, 3), u2 = (0, 10, 1, 3), u3 = (1, 0, 10, 3).

Note that at this profile, candidate 4 is the unique Condorcet winner.

Proposition 4 In the AV game for example 2, let e be the strategy profile in which
each voter approves only his most prefered candidate; e is the unique sophisticated
equilibrium, moreover {e} is the unique stable set of this game, hence survives
any sequence of elimination of weakly dominated strategies. At e the Condorcet
winner receives no vote.

Proof The fourth alternatives defeats any other by a strict majority (2 votes
against 1), hence is the unique Condorcet winner.

Recall that an undominated strategy always approves the most preferred can-
didate and does not approve the least preferred one. Hence, every voter has only
four undominated strategies. After we eliminate all the others, it is easy to ver-
ify that, for player 1, the strategy (1, 0, 0, 0) dominates (1, 0, 1, 1) and (1, 0, 1, 0).
Once these two strategies of player 1 are eliminated, (0, 0, 1, 0) is dominant for
player 3. In the reduced game, player 3 has only one strategy - (0, 0, 1, 0), while
player 1 has two, namely (1, 0, 0, 0) and (1, 0, 0, 1). Now, (0, 1, 0, 0) is dominant
for player 2. Hence eliminating the other strategies, (1, 0, 0, 0) becomes domi-
nant for player 1. It is easy to see that this equilibrium is strict; the result follows
like in the previous proposition. 	


Hence, sophisticated voting (and thus strategic stability) may imply that the
Condorcet winner receives no approval vote. As we have remarked earlier,
Fishburn and Brams (1981) prove that if a candidate x is a Condorcet winner,
then there is a sincere undominated strategy combination that elects x. This and
the previous example show how this result cannot be extended to sophisticated
(or strategically stable) strategies.5

5 In this example the undominated equilibrium electing the Condorcet winner is ((1, 0, 0, 1),
(0, 1, 0, 1), (0, 0, 1, 1)). It can be proved that such an equilibrium is not even perfect. Hence the
exclusion of the “Condorcet outcome” from the solution set does not depend on the definition of
stability. As a matter of fact, not even a weaker requirement such as perfection guarantees that
the set of solutions contains such an outcome. For a simpler example of this, see footnote 3 in De
Sinopoli (1999).
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5 Example 3

Let us consider the AV game (�) for the following example:

Example 3 There are three voters and four candidates. Utilities are given by

u1 = (1000, 867, 866, 0), u2 = (115, 1000, 0, 35), u3 = (0, 35, 115, 1000).

This game has a stable set in which player 1 approves the first and the third can-
didate. Hence strategic stability does not imply sincerity. Moreover, this result
still holds in a neighborhood of the game (an open set of payoffs around the
considered ones) and also for stronger solution concepts.

Proposition 5 The strategy combination

s =
(

(1, 0, 1, 0),
1
4
(0, 1, 0, 0) + 3

4
(1, 1, 0, 0),

1
4
(0, 0, 0, 1) + 3

4
(0, 0, 1, 1)

)

forms a stable set of �. Moreover, there exists a neighborhood (	�) of �, in the
space of approval games with three voters and four candidates, such that every
game in 	� has a stable set with the same support as s.

The proof of the Proposition, which is postponed to the Appendix, consists
in showing that the equilibrium s is strongly stable (Kojima et al. 1985) and,
hence, forms a stable set. The strong stability of s is proven by showing that s is
quasi-strict and isolated and, furthermore, that (s2, s3) is strongly stable in the
2 × 2 game obtained by eliminating all the strategies that are not best replies.
This proof actually implies the stronger result that s is a regular equilibrium
(Harsanyi 1973), because the characterization theorem of Kojima, et al. shows
that an equilibrium is regular if and only if it is quasi strict and strongly stable.6

Unlike Examples 1 and 2, this game cannot be solved by iterative elimination
of dominated strategies. Because {s} is a stable set the pure strategies which are
played with positive probability in s cannot be eliminated. Hence, here, elimi-
nation of dominated strategies cannot eliminate the pure strategies played by
players 2 and 3.

Notice in this example, the second candidates is the Condorcet winner and
is elected with probability 1

64 in the equilibrium s, while the third candidate,
who is the Condorcet loser, is elected with probability 31

64 .7 Under plurality rule,

6 Dutta and Laslier (2005) give a direct but longer proof that s is regular. Even if we obtain the
stronger result that s is strongly stable (and regular), we prefer to state the results in terms of
strategic stability because many games, including AV games, have no strongly stable equilibria.
Consider the example where everybody has the same preference order over the alternatives. In this
case, with three or more voters, no strongly stable equilibrium exists.
7 The probabilities of election of the first and the fourth candidate are, respectively, 31

64 and 1
64 .
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for the same preferences, there is only a stable set8 and, in this stable set, the
Condorcet winner is elected with probability 1.

Furthermore notice that, by adding two voters i and j, with ui = (1, 1, 0, 0)

and uj = (0, 0, 1, 1), we obtain a strongly stable equilibrium in which the strat-
egies of the original players are the ones in s while i and j use their dominant
strategies. Replicating this, we can obtain an example of insincere voting with
any odd number of voters. 9

Our proof also shows that not even more demanding criteria such as strong
stability or regularity, can exclude insincere strategies. This is due to the fact that
an insincere strategy can be the only best reply to mixed strategy combinations
of the opponents. Hence, as long as we allow for mixed strategies, there is no
reason to exclude non-sincere behavior.

6 Conclusion

In this paper, three examples of approval voting games have been proposed.
The first one allows us to conclude that in the class of approval games, the
perfect equilibrium concept is not restrictive enough to capture sophisticated
voting, since there are “perfect equilibrium” outcomes that do not survive the
iterated elimination of dominated strategies and that are not induced by any
stable set. Furthermore, even if there is a Condorcet winner, strategic stability,
as well as sophisticated voting, does not imply his election and, as a second
example shows, it is possible that nobody votes for him.

The third example shows that strategic stability does not imply sincerity. It
is not difficult to see that for every pure strategy of the other players, the set of
best replies contains a sincere strategy. As soon as we allow for mixed strategies,
not only is this not true, but even a strong requirement such as strategic stability
cannot exclude the use of non-sincere strategies. Moreover, this result holds in
a complete neighborhood of the game and also for more demanding criteria.

Acknowledgements This paper combines and extends two papers (De Sinopoli 1999, Dutta and
Laslier 2005), we thank Michel Le Breton for bringing us together. Francesco would like to thank
Marco Dardi whose comments deeply improved his previous version of the paper. Thanks also to
an anonymous referee for helping us to clarify several points.

Appendix

Proof of Proposition 2 Given that a strongly stable equilibrium (Kojima et al.
1985) is a stable set as a singleton,10 it is enough to prove that

8 In the unique stable set, players 1 and 2 vote for the second candidate and player 3 for the fourth.
9 Similar examples can be constructed also with 4 voters (see the second example in De Sinopoli,
1999), and, hence, for any number of voters greater than or equal to 3.
10 See Mertens (1991,pp.697–699) which shows how the continuity of the map from the space of
perturbed games to subsets of equilibria is a stronger requirement than the one included in the
definition of stability.
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s =
(

(1, 0, 1, 0),
1
4
(0, 1, 0, 0) + 3

4
(1, 1, 0, 0),

1
4
(0, 0, 0, 1) + 3

4
(0, 0, 1, 1)

)

is strongly stable.
The first step of the proof consists in showing that s is a quasi-strict equi-

librium (each player uses all his pure best replies). To this end we calculate
the probability, under s, of each contingency a player can face and, from these
probabilities, the expected utility derived from each undominated strategy. It is
easy to see that no dominated strategy is a best reply to s.

Player 1
Pr(ω−1 = (1, 1, 1, 1) | s−1) = 9

16
Pr(ω−1 = (0, 1, 1, 1) | s−1) = 3

16
Pr(ω−1 = (1, 1, 0, 1) | s−1) = 3

16
Pr(ω−1 = (0, 1, 0, 1) | s−1) = 1

16 .
From these probabilities it follows that:
U1((1, 0, 1, 0), s−1) = 9

16 · 1866
2 + 3

16 · 866 + 3
16 · 1000 + 1

16 · 2733
4 = 58713

64
U1((1, 0, 0, 0), s−1) = 9

16 · 1000 + 3
16 · 2733

4 + 3
16 · 1000 + 1

16 · 1867
3 = 176065

192
U1((1, 1, 0, 0), s−1) = 9

16 · 1867
2 + 3

16 · 867 + 3
16 · 1867

2 + 1
16 · 867 = 7335

8
U1((1, 1, 1, 0), s−1) = 9

16 · 2733
3 + 3

16 · 1733
2 + 3

16 · 1867
2 + 1

16 · 867 = 7233
8 .

Since no dominated strategy is a best reply to s−1 we have that (1, 0, 1, 0) is
the only best reply to s−1 (although this strategy is not sincere).

Player 2
Pr(ω−2 = (1, 0, 1, 1) | s−2) = 1

4
Pr(ω−2 = (1, 0, 2, 1) | s−2) = 3

4 .
From these probabilities it follows that:
U2((0, 1, 0, 0), s−2) = 1

4 · 1150
4 + 3

4 · 0 = 575
8

U2((1, 1, 0, 0), s−2) = 1
4 · 115 + 3

4 · 115
2 = 575

8
U2((0, 1, 0, 1), s−2) = 1

4 · 35 + 3
4 · 35

2 = 175
8

U2((1, 1, 0, 1), s−2) = 1
4 · 150

2 + 3
4 · 150

3 = 225
4 .

Hence, (0, 1, 0, 0) and (1, 1, 0, 0) are the only two pure best replies to s−2.
Player 3
Pr(ω−3 = (1, 1, 1, 0) | s−3) = 1

4
Pr(ω−3 = (2, 1, 1, 0) | s−3) = 3

4 .
From these probabilities it follows that:
U3((0, 0, 0, 1), s−3) = 1

4 · 1150
4 + 3

4 · 0 = 575
8

U3((0, 0, 1, 1), s−3) = 1
4 · 115 + 3

4 · 115
2 = 575

8
U3((0, 1, 0, 1), s−3) = 1

4 · 35 + 3
4 · 35

2 = 175
8

U3((0, 1, 1, 1), s−3) = 1
4 · 150

2 + 3
4 · 150

3 = 225
4 .

Hence, the only two pure best replies of player 3 are (0, 0, 0, 1) and (0, 0, 1, 1).

The second step requires to prove that the quasi-strict equilibrium s is iso-
lated. To analyze the set of equilibria near s we can limit the analysis to the case
in which the strategy of player 1 is fixed, because he is using a strict best reply.
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Moreover, because s is quasi strict, also players 2 and 3 can use (sufficiently
close to s) only the pure strategies in s. Hence, to show that s is isolated it is
enough to study the equilibria of the following game between players 2 and 3:

(0, 0, 0, 1) (0, 0, 1, 1)

(0, 1, 0, 0) 575
2 , 575

2 0, 115

(1, 1, 0, 0) 115, 0 115
2 , 115

2

This game has two pure equilibria, i.e. ((0, 1, 0, 0), (0, 0, 0, 1)) and ((1, 1, 0, 0),
(0, 0, 1, 1)), and a completely mixed one corresponding to s. Hence, s is isolated.

The third step consists in showing that s is a strongly stable equilibrium.
Since s is quasi-strict and isolated we can conclude (cf. van Damme, 1991: 55,
Th. 3.4.4) that (s2, s3) is a strongly stable equilibrium of the reduced game where
we take s1 as being fixed. Since the first player is using his strict best reply, s is
a strongly stable equilibrium of the whole game. Hence, {s} is a stable set of �.

The second part of the proposition directly follows from corollary 4.1 in
Kojima et al. (1985), which states that, given a game and a strongly stable
equilibrium, the unique nearby equilibrium of a nearby game is strongly stable
too. In this statement, a game is a point in the Euclidean space of dimension
n

∏n
i=1 ki, where ki is the number of pure strategies for player i (here ki = 2K

for all i). The space of approval voting games is a subspace (of dimension nK)
defined by the utility of each of the K candidates for each of the n players. Since
each “approval game” near � has a normal form close to that of � and since for
sufficiently close games and sufficiently close strategies, no other strategy than
the ones in s can be a best reply, the claim easily follows. 	
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