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This paper introduces a mathematical model for a currently popular financial product
called a stock loan. Quantitative analysis is carried out to establish explicitly the value
of such a loan, as well as the ranges of fair values of the loan size and interest, and the
fee for providing such a service.
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1. INTRODUCTION

We consider a simple economy where a client (borrower), who owns one share of a stock,
obtains a loan from a bank (lender) with the share as collateral. The client may regain the
stock on or before, depending on the type of the loan, the loan maturity by repaying the
bank the principal and interest, or surrender the stock instead of repaying the loan. Such
a loan is called a stock loan or security loan, which is currently a very popular service
provided by many banks and financial firms.1

A
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From another perspective, for investors who do not have equity positions yet with
limited funds, stock loan may serve as a leverage device for them to take advantage of
the potential stock rise. In such a case a stock loan is more like a real estate mortgage
(although due to less liquidity the price movement of a house behaves quite differently
from that of a stock).

A natural problem arises for both the client and the bank: what are the fair values
of the principal, the loan interest, and the fee charged by the bank for providing the
service? To the authors’ best knowledge, few results on this problem have been reported
in the literature. The aim of this paper is to provide a complete quantitative analysis
of this problem. In the next section, we formulate a mathematical model of the stock
loan and show that it is essentially an American call option with a time-dependent strike
price or, equivalently, one with a possibly negative interest rate. In Section 3, we provide
an explicit formula for the value of the stock loan. In Section 4, we apply the results
in Section 3 to work out the rational values of the parameters. Concluding remarks are
given in Section 5.

2. PROBLEM FORMULATION

We consider the standard Black–Scholes model in a continuous-time financial market
consisting of two assets: a bond and a stock. The continuously compounding interest
rate of the bond is assumed to be a constant r > 0. The uncertainty associated with
the stock is described by a filtered risk-neutral probability space (�,F, (Ft)t≥0, P) on
which a standard Brownian motion W ≡ {Wt, t ≥ 0} is defined, where (Ft)t≥0 is the P-
augmentation of the filtration generated by W , with F0 = σ {∅, �} and F = σ {⋃t≥0 Ft}.
The market price process of the stock follows a geometric Brownian motion

St = S0 exp
{

(r − δ)t + σ Wt − σ 2

2
t
}

, t ≥ 0,(2.1)

where S0 > 0 is the initial price of the stock, σ > 0 is the volatility, and δ ≥ 0 is the
dividend yield.

A stock loan model under consideration in this paper has the following specifications:

� At time 0, a client borrows amount q (q > 0) from a bank with one share of the
stock as collateral, whereas the bank charges amount c (0 ≤ c ≤ q) for the service.
As a consequence, the client gets amount (q − c) from the bank.

� The continuously compounding loan interest rate is γ . The client may regain the
stock by repaying amount qeγ t to the bank at any time t ≥ 0. The dividends of the
stock accrued are collected by the bank until the client regains the stock, and
the paid dividends are not credited to the client.

� The client is not obliged to regain the stock.

The question is: what are the rational values of the parameters q, c, and γ ?
The above problem can be regarded as the client initially buying at price (S0 − q + c) an

American option with a payoff process Yt = (St − qeγ t)+, t ≥ 0, where a+ := max{a, 0}
for any real number a. We call the value of this option the (initial) value or price of the un-
derlying stock loan. The rational values of q, c, and γ should be such that the value of the
stock loan is (S0 − q + c). The crucial difference between this option and the conventional
American option is that the former has a time-dependent strike price. Thus our problem
is essentially to evaluate an American call option with a time-dependent strike price. It
should be emphasized that an American option with a time-dependent strike price is not
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a straightforward adaptation of its constant-strike counterpart, and there is an inherent
technical subtlety associated with our problem (see discussion below and Remark 3.1).
This is also attested by the fact that our stock loan value function is structurally different
from that of a conventional perpetual American option (see Remark 3.2).

One may argue that one could use a simple transformation to turn the problem into
one with a time-independent strike price. Specifically, the initial value function of the
option with respect to the initial stock price S0 = x is

f (x) := sup
τ∈T0

E
[
e−rτ (Sτ − qeγ τ )+

] = sup
τ∈T0

E
[
e−(r−γ )τ (S̃τ − q)+

]
,

where T0 denotes all (Ft)t≥0-stopping times, and S̃t ≡ e−γ t St is given by

S̃t = x exp
{

(r − γ − δ)t + σ Wt − σ 2

2
t
}

, t ≥ 0.

In other words, our problem is also equivalent to a conventional perpetual American call
option with a possibly negative interest rate r̃ := r − γ (because in the context of our
model, the loan rate γ is usually larger than the risk-free rate r). This negative interest
rate r̃ leads to a major difficulty in applying the standard approach involving a variational
inequality and the smooth-fit principle (see, e.g., Karatzas and Shreve 1998, pp. 60–67) to
solve the problem. To elaborate, assume δ = 0 for simplicity. The variational inequality
that f must satisfy is (cf. Karatzas and Shreve 1998, p. 64)


max

{
1
2
σ 2x2 f ′′ + r̃ xf ′ − r̃ f , (x − q)+ − f

}
= 0, x > 0,

f (0) = 0.

(2.2)

One should then solve the equation

1
2
σ 2x2 f ′′ + r̃ xf ′ − r̃ f = 0(2.3)

on a certain interval [0, b) (the so-called continuation region) and smoothly fit with the
solution f (x) = (x − q) on (b, ∞) (the stopping region). The point b ∈ [0, ∞] and other
related unknown coefficients will be determined based on the smooth fit at b. Specifically,
the general solution to (2.3) is

f (x) = C1x λ1 + C2x λ2 ,

where λ1,2 are the solutions to the indicial equation

1
2
σ 2λ2 +

(
r̃ − 1

2
σ 2

)
λ − r̃ = 0,(2.4)

which has two solutions

λ1 =

(
−r̃ + 1

2
σ 2

)
+

∣∣∣∣∣r̃ + 1
2
σ 2

∣∣∣∣∣
σ 2

, λ2 =

(
−r̃ + 1

2
σ 2

)
−

∣∣∣∣∣r̃ + 1
2
σ 2

∣∣∣∣∣
σ 2

.

If r̃ > 0
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or C1 = 1, b = +∞. Therefore, f (x) = x ∀x ≥ 0, recovering the familiar result that the
initial value of a perpetual American call option (without dividend) is the initial stock
price.

Now, if r̃ is negative (the present case) with r̃ + 1
2σ 2 < 0, then λ1 = −2r̃

σ 2 > 1, λ2 = 1. As
opposed to the conventional case, none of the λi’s will be rejected by the initial condition
f (0) = 0. Thus f (x) = C1xλ1 + C2x, and we have three unknown parameters (C1, C2, and
b) while there are only two equations based on the smooth fit at b. This explains the major
difficulty in using the variational inequality approach. In this paper, we choose to use a
pure probabilistic approach to solve our problem.

The above analysis also shows that (1) the American call option pricing with a negative
interest rate is a meaningful problem, and (2) the problem cannot be solved directly by a
variational inequality (or Black–Scholes) approach.

To conclude this section, notice that our stock loan model is structured with an infi-
nite life. Practically, the maturity of the loan is finite (although many such products do
allow renewal or refinancing for a subsequent term). However, for mathematical tractabil-
ity, we assume for now that the maturity of the loan is infinite; thereby we are dealing
with a perpetual American option. It remains a challenging open problem to fully ana-
lyze a finite-term American call option with time-dependent strike prices and dividend
payments.

3. STOCK LOAN EVALUATION

In this section, we compute the value of the stock loan, or that of a perpetual American
option with a payoff process Yt = (St − qeγ t)+, t ≥ 0. Note that since the payoff process
of the stock loan Yt ≥ 0 a.s., and Yt > 0 with a positive probability, to avoid arbitrage we
must have the following standing assumption:

STANDING ASSUMPTION. S0 − q + c > 0.

Now, by the law of the iterated logarithm for Brownian motion, we see that
lim supt→∞(e−rtYt) = 0 a.s. So we define (e−rtYt)|t=+∞ := 0.

The value of the American option at time t is (cf. Shiryaev et al. 1994)

Vt = esssup
τ∈Tt

E

[
e−r (τ−t)(Sτ − qeγ τ

)
+
∣∣Ft

]
,(3.1)

where Tt denotes all (Fs)s≥0-stopping times τ with τ ≥ t a.s. In particular, the initial value
function of the option with respect to the initial stock price x is

f (x) := sup
τ∈T0

E

[
e−rτ

(
xe(r−δ)τ+σ Wτ − σ2

2 τ − qeγ τ
)

+

]
.(3.2)

Next, we introduce some qualitative properties of the value function f , which are
helpful in solving the optimal stopping time problem (3.2).

PROPOSITION 3.1. f is convex, continuous and nondecreasing on (0,):�{ )
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where the last inequality follows from a standard argument involving the nonnegative

martingale property of {eσ Wt− σ2
2 t, t ≥ 0}, the optional sampling theorem and Fatou’s

lemma. Finally, by its definition f is obviously convex and nondecreasing. Since f is finite
on its domain, the convexity implies the continuity. �

COROLLARY 3.1. Let k = inf{ x > 0 : x − q ≥ f (x) }, where inf ∅ := ∞. Then k ≥ q
and

{ x > 0 : x − q ≥ f (x) } = [k, ∞).

Proof . It is clear for the case with k = ∞. Now we suppose k ∈ [q, ∞), then we have
f (k) = k − q. We claim that f (x) = x − q for all x ≥ k, which implies the conclusion of
the corollary. Otherwise, by Proposition 3.1, there exists a k0 ∈ (k, ∞) such that f (k0) >

k0 − q. Then we have β := f (k0) − f (k)
k0−k > 1. By the convexity of f (x), we have

f (x) − f (k)
x − k

≥ f (k0) − f (k)
k0 − k

= β for all x ≥ k0,

or

f (x) ≥ β(x − k) + k − q for all x ≥ k0,

which implies f (x) > x for sufficiently large x. Thus we arrive at a contradiction to
Proposition 3.1. �

Now we consider a stopping time defined as

τ ∗ := inf
{

t ≥ 0 : St − qeγ t ≥ Vt
}
,

which will be shown to be optimal for problem (3.2) (see Proposition 3.3 below).

PROPOSITION 3.2. The stopping time τ ∗ has the form

τ ∗ ≡ τa = inf
{

t ≥ 0 : e−γ t St = a
}

(3.3)

for some a ≥ q ∨ S0 := max{q, S0}.

Proof . Substituting (2.1) into (3.1), we have

Vt = eγ t · esssup
τ∈Tt

E

[
e−r (τ−t)

(
e−γ t Ste(r−δ)(τ−t)+σ (Wτ −Wt)− σ2

2 (τ−t) − qeγ (τ−t)
)

+

∣∣∣Ft

]

= eγ t · esssup
τ∈T0

E

[
e−rτ

(
xe(r−δ)τ+σ Wτ − σ2

2 τ − qeγ τ
)

+

]
x=e−γ t St

= eγ t f
(
e−γ t St

)
.

Thus the stopping time

τ ∗ = inf
{
t ≥ 0 : St − qeγ t ≥ eγ t f

(
e−γ t St

)}
= inf

{
t ≥ 0 : e−γ t St ≥ k

}
,

(3.4)

where k is defined in Corollary 3.1. Let k (k ≥ q) be defined as in Corollary 3.1. If S0 <

k, then by continuity of St and (3.4) we have τ ∗ = τ k. If S0 ≥ k, then τ ∗ = 0 = τS0 . �

We need to have the following technical result.
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LEMMA 3.1. If δ > 0, or δ = 0 and γ − r > σ 2

2 , then

E

[
sup
t≥0

e−rt(St − qeγ t)
+

]
< ∞.(3.5)

Proof . For λ > 1 and η > 1 satisfying 1
λ

+ 1
η

= 1, and any sufficiently large z > 0, we
have

P

(
sup
t≥0

e−rt(St − qeγ t)
+ > z

)

= P
(∃t ≥ 0, e−rt(St − qeγ t) > z

)
= P

(
∃t ≥ 0, Wt −

(
σ

2
+ δ

σ

)
t >

1
σ

log
(

z
S 0

+ q
S 0

e(γ−r )t
))

≤ P

(
∃t ≥ 0, Wt −

(
σ

2
+ δ

σ

)
t >

1
λσ

log
λz
S 0

+ 1
ησ

log
(

ηq
S 0

e(γ−r )t
))

= P

(
∃t ≥ 0, Wt −

(
σ

2
+ δ

σ
+ γ − r

ησ

)
t >

1
λσ

log
λz
S 0

+ 1
ησ

log
ηq
S 0

)

= P

(
sup

0≤t<∞

(
Wt −

(
σ

2
+ δ

σ
+ γ − r

ησ

)
t
)

>
1

λσ
log

λz
S 0

+ 1
ησ

log
ηq
S 0

)

(3.6)

= exp
{
−2

(
σ

2
+ δ

σ
+ γ − r

ησ

)
·
(

1
λσ

log
λz
S 0

+ 1
ησ

log
ηq
S 0

)}
(3.7)

=
(

ηq
S 0

)−
(

2δ

ησ2 + 1
η
+ 2(γ−r )

η2σ2

)
·
(

λz
S 0

)−
(

2δ

λσ2 + 1
λ
+ 2(γ−r )

λησ2

)
,(3.8)

where (3.6) follows from the concavity of the logarithm function and (3.7) follows from
a well-known result on the distribution of Brownian functional (see, e.g., Borodin and
Salminen 2002, p. 251). It is clear that

2δ

λσ 2
+ 1

λ
+ 2(γ − r )

λησ 2
= 2(η − 1)δ

ησ 2
+ σ 2η2 + (2(γ − r ) − σ 2)η − 2(γ − r )

σ 2η2
> 1(3.9)

for any fixed, sufficiently large η since we have either δ > 0, or δ = 0 and γ − r > σ 2

2 .
Consequently, (3.5) follows from (3.8) and (3.9). �

PROPOSITION 3.3. Under the condition of Lemma 3.1, τ ∗ solves the optimal stopping
problem in (3.2) with x = S0.

Proof . By Lemma 3.1, it can be proved that the stopping time defined as follows

τ∗ = inf
{
t ≥ 0 :

(
St − qeγ t)

+ ≥ Vt
}

solves the optimal stopping problem in (3.2) with x = S0. It is clear that τ∗ ≤ τ ∗ a.s. On
the other hand, whenever Sτ∗ ≥ qeγ τ∗ we have

Sτ∗ − qeγ τ∗ = (Sτ∗ − qeγ τ∗ )+ = Vτ∗
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and by definition of τ ∗, τ ∗ ≤ τ∗ a.s. Hence we have proved that [Sτ∗ ≥ qeγ τ∗ ] ⊂ [τ∗ = τ ∗].
Accordingly,

e−rτ∗
(
Sτ∗ − qeγ τ∗

)
+ = e−rτ∗

(
Sτ∗ − qeγ τ∗

)
1[Sτ∗ ≥qeγ τ∗ ]

= e−rτ ∗(
Sτ ∗ − qeγ τ ∗)

1[Sτ∗ ≥qeγ τ∗ ]

≤ e−rτ ∗(
Sτ ∗ − qeγ τ ∗)

= e−rτ ∗(
Sτ ∗ − qeγ τ ∗)

+,

which yields the conclusion of the proposition. �

COROLLARY 3.2. Under the condition of Lemma 3.1, the initial value of the stock loan
is

f (S 0) = sup
a≥q∨S 0

g(a),

where

g(a) := E
[
e−rτa

(
Sτa − qeγ τa

)
+
] = (a − q)E

[
e(γ−r )τa 1[τa<∞]

]
and τ a is defined as in (3.3).

In what follows, we will compute g(a). Denote

µ = −
(

σ

2
+ γ − r + δ

σ

)
, b = 1

σ
log

a
S 0

.(3.10)

Then by (2.1), τ a can be rewritten as

τa = inf{t ≥ 0 : Wt + µt = b}.
The following result, which extends the range of the index λ for Laplace transform of

the law of the first hitting time of Brownian motion with drift, is of separate interest.

LEMMA 3.2. If µ2 − 2 λ ≥ 0, then

E
[
eλτa 1[τa<∞]

] = eµb−|b|
√

µ2−2λ.

Proof . It is a well-known result [see, e.g., Karatzas and Shreve 1991, (5.12) on p. 197]
that the density of τ a is

P(τa ∈ dt) = |b|√
2π t3

e− (b−µt)2

2t dt, t > 0.

Thus

E
[
eλτa 1[τa<∞]

] =
∫ ∞

0

|b|√
2π t3

eλte− (b−µt)2

2t dt.(3.11)

If µ2 − 2 λ > 0, then let ε > 0 be small enough such that µ2 − 2(λ + ε) > 0. We have

E
[
eλτa 1[τa<∞]

] = e−b
(√

µ2−2(λ+ε)−µ
) ∫ ∞

0

|b|√
2π t3

e−εte− (b−
√

µ2−2(λ+ε) t)2

2t dt

= e−b(
√

µ2−2(λ+ε)−µ)e
√

µ2−2(λ+ε) b−|b|
√

µ2−2(λ+ε)+2ε

= eµb−|b|
√

µ2−2λ,
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where the second equality follows a well-known result on the Laplace transform of the
law of the hitting time of Brownian motion with drift (see, e.g., Karatzas and Shreve 1991,
Exercise 5.10 on p. 197). Finally, for the case when µ2 − 2 λ = 0, the conclusion follows
from considering a sequence λn ↑ λ along with the monotone convergence theorem. �

REMARK 3.1. To calculate the left hand side of (3.11) poses the main technical difficulty
for pricing an American call option with time-dependent strike prices. This is because in
our case, λ = γ − r may well be positive, whereas in the case of a conventional American
option the index λ for the corresponding Laplace transform is automatically negative
so that the exponential martingale technique can be applied (see Borodin and Salminen
2002; Karatzas and Shreve 1991). We get around this by imposing a weaker condition
µ2 − 2λ ≥ 0, which happens to be satisfied in our stock loan problem (see below).

By (3.10), it is clear that

µ2 − 2(γ − r ) =
(

σ

2
− γ − r + δ

σ

)2

+ 2δ ≥ 0.

Hence it follows from Lemma 3.2 that, for all a ≥ S0,

g(a) = (a − q)
(

a
S 0

)− 1
σ

[√
( σ

2 − γ−r+δ

σ )2+2δ+ σ
2 + γ−r+δ

σ

]
.(3.12)

Now we can claim the main result of this section.

THEOREM 3.1. We have the following assertions on g(a) and f (S0):

(a) If δ = 0 and γ − r ≤ σ 2

2 , then g(a) = (a−q)S 0
a for a ≥ S0 and f (S0) = S0.

(b) If δ > 0, or δ = 0 and γ − r > σ 2

2 , then

a0 :=
q




√(
σ

2
− γ − r + δ

σ

)2

+ 2δ + σ

2
+ γ − r + δ

σ




√(
σ

2
− γ − r + δ

σ

)2

+ 2δ − σ

2
+ γ − r + δ

σ

> q,

and we have the following two cases:

(b1) If q < a0 ≤ S0, then g(a) attains its maximum on [S0, ∞) at a = S0 and f (S0) =
S0 − q.

(b2) If a0 > S0, then g(a) attains its maximum on [q ∨S0, ∞) at a = a0 and f (S0) =
g(a0).

Proof . It is clear that√(
σ

2
− γ − r + δ

σ

)2

+ 2δ −
(

σ

2
− γ − r + δ

σ

)
≥ 0,

where the equality holds if and only if δ = 0 and γ − r ≤ σ 2

2 .
In Case (a), it is straightforward that g(a) = (a−q)S 0

a for a ≥ S0. By (3.2), we
have f (S 0) ≥ supa≥S 0

g(a) = S 0 and hence by Proposition 3.1, f (S0) = S0.
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In Case (b), it is evident that a0 > q. For a > q ∨S0, we have from (3.12) that

log g(a) = log(a − q) − 1
σ




√(
σ

2
− γ − r + δ

σ

)2

+ 2δ + σ

2
+ γ − r + δ

σ


 log

a
S 0

and
d(log g(a))

da

=
−




√(
σ

2
− γ − r + δ

σ

)2

+ 2δ − σ

2
+ γ − r + δ

σ


 a + q




√(
σ

2
− γ − r + δ

σ

)2

+ 2δ + σ

2
+ γ − r + δ

σ




σa(a − q)
.

The numerator, as a function of a, is decreasing. Since a0 makes the numerator to be zero,
we conclude:

� If q < a0 ≤ S0, then d(log g(a))
da < 0 for a > S0, which implies that g(a) is decreasing

on [S0, ∞); hence it attains its maximum at a = S0. In this case, by Corollary 3.2,
f (S0) = g(S0) = S0 − q.

� If a0 > S0, then d(log g(a))
da > 0 for S0 < a < a0 and d(log g(a))

da < 0 for a > a0. Thus
in [q ∨S0, ∞), g(a) attains its maximum at a = a0 and by Corollary 3.2, f (S0) =
g(a0). �

REMARK 3.2. We see from the preceding theorem that a perpetual American option
with a time-varying strike price, qeγ t, indeed has a structurally different value process
as compared with the counterpart with a constant strike price. Let us consider the case
without dividend (δ = 0). In this case, the value of a conventional perpetual American
option with a constant strike q is f (S0) = S0 [see, e.g., Karatzas and Shreve 1998, equation
(6.17) on p. 65 with δ = 0]. However, the initial value of our option is

f (S 0) =




S 0, if γ ≤ r + σ 2

2
;

(α − 1)α−1

αα
q1−α Sα

0 , if γ > r + σ 2

2
and q >

α − 1
α

S 0;

S 0 − q, if γ > r + σ 2

2
and q ≤ α − 1

α
S 0,

where α := 2(γ − r )
σ 2 > 1 if γ > r + σ 2

2 . So, when γ is small ( γ ≤ r + σ 2

2 ), our option has
the same value as a perpetual European or American option with a constant strike price.
But this does not hold true when γ is large ( γ > r + σ 2

2 ). Incidentally, this also echos
the variational inequality analysis in Section 2 where it was shown that a difficulty arises
when γ > r + σ 2

2 .

4. FAIR VALUES OF THE PARAMETERS

Now, we are in the position to apply Theorem 3.1 to work out the fair values for the
parameters γ , q, and c. We proceed for three cases:

Case (a) in Theorem 3.1. This is the case when there is no dividend (δ = 0) and
the excess loan interest rate over the risk-free interest rate is small ( γ − r ≤ σ 2

2 ). By
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Theorem 3.1 the initial value of the stock loan is f (S0) = S0. In order to have f (S0) =
S0 − q + c, it must be that q − c = 0. This means that the loan interest rate is too small
for the bank to have an incentive to actually carry out the business (it charges an amount
equal to the loan size, effectively giving no money to the client). In this case, the client
at the initial time exchanges one share of the stock for a perpetual American option
with the payoff process (St − qeγ t)+ for a notional amount q (the specific value of q is
insignificant). This is not an interesting case.

Case (b1) in Theorem 3.1. In this case, the bank would receive dividend (δ > 0) and/or
the loan interest rate is sufficiently large ( γ − r > σ 2

2 ), and the loan-to-value is not large
enough, i.e.,

q
S 0

≤

√(
σ

2
− γ − r + δ

σ

)2

+ 2δ − σ

2
+ γ − r + δ

σ√(
σ

2
− γ − r + δ

σ

)2

+ 2δ + σ

2
+ γ − r + δ

σ

(≤1).

By Theorem 3.1 the initial value of the stock loan is f (S0) = S0 − q. In order to have
f (S0) = S0 − q + c, one has c = 0, which means that the bank does not need to charge a
fee for the service. As a result, initially the client obtains the stock loan at the price
S0 − q. However, Theorem 3.1 also suggests that the optimal exercise time is t = 0; hence
there is actually no exchange between the client and the bank (or that there is not enough
incentive for the client to do the business). This case is also not interesting.

Case (b2) in Theorem 3.1. In this case, both parties have the incentives to do the
business (the bank does since there is dividend payment and/or the loan interest rate is
high enough, and so does the client as the loan-to-value is sufficiently high). It follows
from Theorem 3.1 that the initial value of the stock loan is f (S0) = g(a0) > S0 − q. Then
the bank can charge an amount c = g(a0) − S0 + q from the client for the service. The
fair values of the parameters q, c, and γ should be such that√(

σ

2
− γ − r + δ

σ

)2

+ 2δ − σ

2
+ γ − r + δ

σ
> 0

(
i.e., δ > 0, or γ − r >

σ 2

2

)
,

q >

√(
σ

2
− γ − r + δ

σ

)2

+ 2δ − σ

2
+ γ − r + δ

σ√(
σ

2
− γ − r + δ

σ

)2

+ 2δ + σ

2
+ γ − r + δ

σ

S 0,

and

c = g(a0) − S 0 + q.

The optimal time for the client to regain the stock is when the stock price discounted to
the initial time (using the loan interest rate), i.e., e−γ tSt, hits a0 for the first time.

In particular, if δ = 0, then the fair values of the parameters q, c, and γ should be such
that



STOCK LOANS 317

γ > r + σ 2

2
,

q >
α − 1

α
S 0

and
c = (α − 1)α−1

αα
q1−α Sα

0 − S 0 + q,

where α := 2(γ − r )
σ 2 > 1. The client should claim the stock back as soon as the present

value (evaluated at the loan interest rate) of the stock reaches a0 = α
α − 1 q.

EXAMPLE 4.1. Consider a model where r = 0.05, σ = 0.15, γ = 0.07, δ = 0 and S0 =
100. Then α = 1.7778 > 1, and α − 1

α
= 0.4376. This means any stock loan with a loan-

to-value over 43.76% is marketable. The following is a table of service charge versus loan
size based on the aforementioned formula.

q 50 60 70 80 90 100 110

c 0.7010 3.9976 9.0264 15.1764 22.0971 29.5716 37.4587

5. CONCLUDING REMARKS

In this paper, we have established a model, for the first time in the literature to our best
knowledge, for the stock loan instrument. By relating the model to an American perpetual
call option with a time-varying striking price, we have been able to derive explicitly the
value of the loan, as well as the fair values of other key parameters.

There are many interesting research problems associated with a stock loan. For ex-
ample, how to evaluate such a loan if any dividend income generated is credited toward
accrued interest on the loan (rather than taken by the lender as in this paper)? How to
model a termed loan and the associated decision problem where the client can choose
to refinance and take out a larger loan for a subsequent term upon expiry of the current
term? What if the lender may also terminate the contract at any time by paying a penalty
to the borrower (in this case, the loan bears resemblance to the so-called game options as
studied by Kifer 2000)?

To conclude, this paper is intended to be more initiating and inspiring—in the sense
that it will inspire more researches along the line—than concluding and exhaustive.
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