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Abstract

We construct an equilibrium model of the labor market that combines the
theory of equilibrium search and matching and the theory of dynamic con-
tracting. Jobs are dynamic contracts. Equilibrium layoffs and retirements are
terminations of dynamic contracts. Transitions from unemployment to new
jobs are modelled as a process of matching and bargaining. We then calibrate
the model to the U.S. economy to study worker turnover, compensation dy-
namics and distribution. We show that the model can generate equilibrium
wage dispersions similar to that in the data. Hornstein, Krusell and Violante
(2006) argue that standard search matching models can generate only a very
small differential between the average wage and the lowest wage paid in the
labor market.
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1 Introduction

We construct an equilibrium model of the labor market that combines the theory of
equilibrium search and matching and the theory of dynamic contracting. Jobs are
dynamic contracts. Equilibrium layoffs and retirements are terminations of optimal
dynamic contracts, as in Wang (2005). Transitions from unemployment to new jobs
are modelled as a process of matching and bargaining, as in Mortensen and Pissarides
(1994). Matched workers and firms bargain over the values of the optimal contract
to each party, and then the dynamics of the optimal contract will take them to a
state of termination. Firms enter freely into the market to endogenously determine
the number of jobs in the economy.

The standard Mortensen-Pissarides equilibrium matching model of the labor mar-
ket is built around two key mechanisms: a matching-bargaining mechanism that sets
the worker-firm pair up for an employment relationship, and a dynamic but exoge-
nous process of match productivity then provides an engine for job separation. An
important extension of the standard match model is Moscarini (2005), who puts the
model of Jovanovic (1979) into the Mortensen-Pissarides framework to model sepa-
ration as a process of learning about the productivity of the match, and allows the
match to be dissolved once the perceived match productivity is sufficiently low.

We take a dynamic contract point of view to modelling equilibrium job separation
in the Mortensen-Pissarides model. In this paper, we let the worker and firm enter
into an optimal dynamic contract upon a match, and job separation is then modelled
as the termination of the dynamic contract. In our environment of moral hazard,
termination is used as an incentive device to induce worker efforts and as a way of
minimizing the cost of worker compensation. Workers that produce a sequence of bad
outputs become too poor to motivate, and workers who produce a sequence of good
outputs become too expensive to compensate and motivate, as in Spear and Wang
(2005). Following terminations, workers are free to go back to the labor market to
seek new matches, or choose to stay temporarily or permanently out of the labor
market. This generates equilibrium flows between employment and unemployment
and into retirements.

Thus job separation is a purely endogenous process in our model, motivated by the
dynamic provision of incentives and risk sharing. Workers and firms are homogeneous
in our model. Matches are identical: they all operate the same production function in
all periods. Termination occurs not because the technology of the match has evolved
to be sufficiently poor as in Mortensen and Pissarides (1994), or it is found out to
be sufficiently bad as in Moscarini (2005). Termination occurs because the economic
relationship that evolved endogenously around the fixed match technology has become
too costly for the parties to maintain.

As in Wang (2005), modelling job separation as termination of a dynamic contract
in a moral hazard environment allows us to model simultaneously employment, unem-
ployment, and retirements, and to determine endogenously the size and composition
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of the economy’s not-in-the-labor-force (NLF), as well as the flows into and out of
NLF. This is important, not only for the explanation of the evolution of NLF itself,
but also necessary for providing a more coherent and complete view of the stocks and
flows of the labor market. Existing labor market data, especially the recently avail-
able Current Population Survey, have shown significant flows of workers among all
three states of the labor market: employment, unemployment, and not in the labor
force, as documented in several recent researches including Fallick and Fleischman
(2004), Nagypal (2005), Shimer (2005b).

Most existing models in the search-matching literature of the labor market fo-
cus on the interaction between employment and unemployment (e.g., Mortensen and
Pissarides (1997), Shimer (2005), Moscarini (2005), Nagypal (2005)), without mod-
elling explicily the state of non-participation in the labor force. Sun-Bin Kim (2001)
and Moscarini (2003) are exceptions. In both papers though, an additional source
of worker heterogeneity is introduced into the Mortensen-Pissarises framework in
order to generate flows into retirement. 1 In our model, unemployment and non-
participation are motivated by the same information friction in a clean model envi-
ronment with homogeneous workers and matches. Workers choose to leave the labor
market because they have accumulated enough wealth to make their efforts too ex-



Mm ratio.
Our model is capable of generating much larger wage dispersions than standard

search and matching models do. In the version of the model that is calibrated to
the U.S. data, the computed Mm ratio is 24.5, similar to what Hornstein, Krusell
and Violante observe in the U.S. data. In our model, wage dispersion is driven by
the provision of intertemporal incentives and intertemporal risk sharing. Wages of
homogenous workers who start with the same initial expected utility fan out over
time as their outputs follow a stchastic process. In our model, workers who produce a
sequence of high outputs will see their wages increase over time, and workers that pro-
duce a sequence of low outputs will see their wages decrease over time. This effect of
the dynamic contracting on distribution was first discussed in Green (1987) and Atke-
son and Lucas (1991). This paper puts this mechanism to workn in a search/matching
framework.

The model is presented in the next section. In Sections 3 and 4 we formulate and
analyze a stationary equilibrium of the model. We then calibrate the model to the
U.S. economy in Section 5 to study the optimal dynamic contract, the stocks and
flows of the labor market, and worker compensation dynamics.

2 Model

Let time be denoted t = 1, 2, · · · The model economy has one consumption good,



In any given period, the total measure of matches formed in the labor market is
equal to

M(ηA, γ − ηE),

where ηA is the measure of the unemployed workers (non-employed and actively look-
ing for a job) in the labor market, and ηE is the measure of the workers that are
currently employed when the labor market opens, and hence γ − ηE is the measure
of vacant (recruiting) firms in the labor market. Throughout the paper, we assume

0 ≤ M(ηA, γ − ηE) < min{ηA, γ − ηE},

so there is always a positive measure of workers and firms that are not matched.
A firm that fails to find a match could either exit the market or to operate as

a vacant firm in the rest of the period, waiting for the labor market to open next
period. We follow the literature to assume that a vacant firm must incur a fixed cost
c0(≥ 0) in order to stay open to job applications.

The matched firm and worker Nash bargain over a dynamic employment contract
for the worker. This dynamic contract specifies a history contingent rule for com-
pensating and terminating the worker. Once they agree on a specific contract, this
contract cannot be renegotiated in any future periods.

Production then takes place immediately after a contract is agreed on. In each
period, the employed worker produces a random output θ ∈ {θ1, · · ·, θn} with prob-
abilities {π1(a), · · ·, πn(a)}, where a ∈ A is the worker’s effort, πi : A → [0, 1], and
A ⊆ R+ is the set of possible effort levels. We assume that the worker’s effort is not
observable to the firm. That is, there is moral hazard.

There is a risk free asset in the model: for each unit of the good invested in
this asset, it returns (1 + r) units of consumption next period. To avoid introducing
additional information asymmetry, we assume that all investments in this asset are
public information and transferable among workers and firms. Workers also have
access to a competitive insurance market where one unit of consumption in the current
period can be exchanged for 1/∆ units of consumption in the next period conditional
on the worker’s survival in the next period.

As part of the model’s physical environment, we make three assumptions about
the contracts that are feasible between the worker and the firm. First, contracts are
subject to a non-negativity constraint that requires that compensation to the worker
be non-negative. Second, once the worker and the firm agree on a contract, they
can commit to not renegotiating the continuations of the contract in all future dates.
Third, firms can fully commit to the terms of a long-term contract, whereas workers’
commitment to a long-term contract is limited: workers are free to leave an ongoing
long-term contract anytime there is a better outside value. Forth, severance payments
must be made in lump-sum amounts to the worker immediately upon termination.
Once an employment relationship is terminated, no further interactions between the
firm and the worker are feasible.
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3 Equilibrium

In this section, we formulate the economy’s stationary equilibrium. We first describe
the economy’s aggregate state variables. We then describe the optimization problems
that workers and firms face, taking the aggregate states as given. Finally, we require
that the aggregate states and individual optimization be consistent with each other,
and that the firms in the market be making zero profits.

3.1 The aggregate states

At the beginning of each period, the state of the model economy is characterized by
the following aggregate state variables

Σ = {(S, µN , ηN), (X,µE, ηE), γ},

where γ is the measure of firms in the market; ηN ∈ (1 − ∆, 1) is the measure of the
non-employed workers, these workers are distributed over the set S = R+ according
to the distribution function µN : S → [0, 1], where S is the set of feasible amounts
of assets each worker can hold. The scalar ηE ∈ (0, 1) denotes the the measure of
workers that are employed at the beginning of a period. The employed workers are
distributed over

X ≡
[
u(0) − φ(0)



(i) The tuple



Definition 1 We say that σ is an optimal solution to the firm and the worker’s
optimization problem, conditional upon a given set of the market’s states Σ and the
implied λ and ρ, if it satisfies the following conditions (I) to (IV).

Condition (I)

U = λ

∫
SA

(U(Vm(s)) + s)dµA(s) + (1 − λ)βU − c0 (4)

Condition (II) For all V ∈ Φ,

U(V ) = max
{Ω,ci,Vi,a}

∑
i6∈Ω

πi(a)
[
θi − ci + β∆

(
U − v−1(Vi)

)]
+

∑
i∈Ω

πi(a) [θi − ci + β∆U(Vi)] + β(1 − ∆)U (5)

subject to (6)-(10) where

V =
n∑

i=1

πi(a)[u(ci) + β∆Vi] − φ(a) (6)

a = arg max
a′

(
n∑

i=1

πi(a
′)[u(ci) + β∆Vi] − φ(a′)

)
(7)

Ω ⊆ Θ, (8)

ci ≥ 0, ∀i (9)

Vi ∈ Φ, ∀i ∈ Ω (10)

Vi ∈ v(R+), ∀i 6∈ Ω (11)

Vi ≥ v(0), ∀i (12)

where the function v : R+ → R, its inverse v−1, which is to be shown to exist later in
the paper, and the value of v(0), will be given in Condition (IV);

Condition (III) The set Φ of all payoffs for an employed worker that can be generated
by a feasible and incentive compatible contract is the largest self-generating set of the
mapping B : 2X → 2X defined by: ∀Φ′ ⊆ X,

B(Φ′) ≡ {V ∈ X|∃{Ω, a, ci, Vi} s.t. (6) − (9), (11), (12), and Vi ∈ Φ′}. (13)
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Condition (IV) The non-employed-worker’s poroblem about whether to enter the
labor market and the related values are described by

SA ≡ {s ∈ R+ : ∃V ∈ Φ, V ≥ Vn(s) such that U(V ) + s ≥ βU}, (14)

SI ≡ [0,+∞)�SA (15)

where

Vn(s) = max
0≤c≤s

{
u(c) − φ(0) + β∆v

(
1 + r

∆
(s− c)

)}
∀s ∈ [0,+∞), (16)

Vm(s) = arg max
V ∈Φ,V≥Vn(s),U(V )+s−βU≥0

(
U(V ) + s− βU

)ω
(V − Vn(s))1−ω, ∀s ∈ SA,

(17)

∀s ≥ 0, v(s) =

{
ρVm(s) + (1 − ρ)Vn(s), if s ∈ SA

Vn(s), if s ∈ SI
(18)

Conditions (I)-(IV) formulate the set of Bellman equations for the values of the
firms and the workers, along with the optimal strategies.

In equation (4), with probability λ the vacant firm is matched with an unemployed
worker whose assets s is drawn randomly from the distribution µA. Once matched,
the worker gives his assets s to the firm, and the firm gives the worker an employment
contract that promises the worker expected utility Vm(s). This Vm(s) is the solution
to the Nash bargaining problem to be formulated in equation (17).

Implicitly in equation (4) is the assumption that assets are transferable between
the worker and the firm. Suppose assets are not freely transferable, then an additional
state variable will be needed for the recursive formulation of the dynamic contract.
We leave this possibility for future work.

In equation (5), v−1(Vi) is the cost to the firm of letting the worker leave the firm
with a promised utility equal to Vi. Here v−1 is the inverse of the worker’s value
function v which, in turn, is defined in equation (18). That is, in order to guarantee
that the worker obtains a level of expected utility equal to Vi, the firm must make a
severance payment to the worker in the amount v−1(Vi).

Observe that at this stage, it is not clear why the inverse function v−1, and the
function Vm are well defined. In the next section, we will show that the function v
is well defined, continuous, and strictly increasing over its domain R+, and hence its
inverse exists and is monotonic. We will also show that Vm(s) is well defined for each
s ∈ SA.

Constraints (10) and (11) require that the expected utility Vi promised to the
worker must be feasible. Specifically, if the worker is retained, then the promised
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utility must be achievable by a sub-game perfect feasible and incentive compatible
contract; if the worker is terminated, then the expected utility the worker receives
must be supportable by a feasible severance payment s.

The constraint Vi ≥ v(0) is a self-enforcing constraint. Under this constraint, the
worker will not have an incentive to leave the contract in all ex post state of the
world. This constraint is not needed if we assume full commitment.

Condition (III) provides a Bellman equation for the state space of the recursive
optimal contract. This follows Abreu, Pearce and Stachetti (1990) and Wang (1997).

Equation (14) defines the set of non-employed workers that are in the market, SA.
The conditions imposed on a s ∈ SA say that, in order for a non-employed worker
to be willing to participate in the labor force, there must be a feasible and incentive
compatible contract to make the worker and the matched firm both better off should
they form a match.

Equation (16) describes the optimization problem for the nonemployed worker
who is not matched with a firm (either he was in the market but failed to form a
match, or he chose not to participate in the labor market).

Equation (17) lays out the problem of Nash bargaining between a worker and a
firm who are matched. The parameter ω ∈ (0, 1) is the exogenously given bargaining
weight. Since in each period each firm and each worker can find at most one match,
βU is the firm’s reservation utility, and Vn(s) is the worker’s.

Note that implicit in Equation (17) is the assumption that (a) the Nash bargaining
problem has a solution and (b) the solution is unique. Proposition 4 in the next section
will verify that this assumption is satisfied.

Equation (18) describes the non-employed worker’s decision about whether or not
to participate in the current labor market. Note that since the worker does not incur
any costs being in the labor market, we make the assumption that workers who do
have a zero probability to be hired will voluntarily stay out of the labor market.

3.3 Equilibrium

Definition 2 A stationary equilibrium of the model is a tuple {Σ, λ, ρ, σ} that satis-
fies the following conditions:

(i) λ and ρ are given by (2) and (3).
(ii) Conditional on Σ, ρ and λ, σ solves the worker and the firm’s optimization

problem.
(iii) Σ is generated by σ and is stationary.
(iv) Free entry of firms into the market ensures

U = 0. (19)
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4 Analysis

In this section, we analyze the Bellman equations in Definition 1 that jointly charac-
terize the worker and the firm’s optimization problems. We begin with a set of useful
observations. Observe first that

Vm(s) ≥ v(s) ≥ Vn(s), ∀s ∈ SA. (20)

This holds because the definitions of SA and Vm(s) imply Vm(s) ≥ Vn(s) and that
v(s) is a convex combination of Vm(s) and Vn(s) for all s ∈ SA. Notice next that

Vn(0) = u(0) − φ(0) + β∆v(0).

Notice also that
v(0) ≥ Vmin.

This holds because the non-employed worker with s = 0 can always choose to stay
out of the labor market permanently to obtain Vmin. Notice therefore

v(0) ≥ Vn(0) = u(0) − φ(0) + β∆v(0) ≥ Vmin. (21)

We now proceed with the analysis. Notice that the function v(·) plays a central
role in the definition of the Bellman equation. First, v(·) is the only link between the
firm’s optimization problem, which is defined by equations (4) to (12), and the rest
of the equations that define the worker’s problem. Second, as we will show, if v(·) is
well defined and continuous, then the worker’s other value functions Vn(·) and Vm(·)
are well defined and continuous. So the strategy of our analysis is to formulate the
function v(·) as a fixed point of a contraction mapping on a space of bounded and
continuous function, and then use the contraction mapping theorem to obtain that
v(·) is uniquely defined and continuous.

Proposition 3 Suppose the function v is continuous. Then

Φ =

[
u(0) − φ(0) + β∆v(0),

u(∞)

1 − β∆

)
.

Assumption 1 The value function U : Φ → R is continuous and concave.

This assumption is reasonable, for the continuity and concavity of U could al-
ways be obtained through randomization over employment contracts if necessary.
See Athey and Bagwell (2001).

Notice that U(V ) → −∞ as V → u(∞)/(1 − β∆). This holds because, indepen-
dent of the contract used, the expected profits of a firm are bounded from above while
the cost of delivering V to the worker goes to infinity as V goes to u(∞)/(1 − β∆).
With this and Assumption 1, let

V ∗ = max arg max
V ∈Φ

U(V ). (22)
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This V ∗ exists, is unique, and has the following interpretation: If the firm is free to
offer any expected utility to a newly hired worker, V ∗ is the highest starting expected
utility of the worker that achives the highest value for the firm.

Proposition 4 For any s ∈ SA, if v(s) is well defined, then the solution to the
bargaining problem (17) exists and is unique.

Assumption 2 There exists a feasible and incentive compatible one-period contract
σ0 that offers the worker expected utility V0 ≥ u(0) − φ(0) and the firm expected
profit Π(V0) > 0.

Lemma 5 Under Assumption 2, 0 ∈ SA.

Lemma 5 implies directly that

U(V ∗) > βU. (23)

Lemma 6 Suppose the function v is well defined and continuous. Then (i) Vn is



Proposition 11 Suppose a newly-terminated worker with expected utility V goes back
to the labor market immediately [i.e., v−1(V ) ∈ SA]. Then either U > 0, or there exists
V ′ ∈ Φ such that V ′ > V and U(V ′) > U(V ).

Given that U(V ) is concave, in equilibrium with U = 0, in order for a worker
to go back to the labor market immediately after termination, his expected utility
must be sufficiently low, lower than V ∗. In other words, a newly terminated worker
is unemployed if he is terminated from the left hand side of the firm’s value function.
Worker who are terminated from the right hand side of the firm’s value function will
stay out of the labor force for at least one period.

5 Quantitative Analysis

In this section, we calibrate our model to the U.S. data, analyze it numerically, and
show that our model could do a better job accounting for the observed wage dispersion
than standard search/matching models.

5.1 Parameterization and Calibration

We set the time period to be one month. We set the discount rate to be r = 0.00417
to obtain an annual interest rate of 5%. We then set the worker’s discount factor to
be β = 1/(1 + r). We set ∆ = 0.99815 so the worker’s expected lifetime is 45 years.

We set the worker’s utility function to be

u(c) − φ(a) = log(ρ0 + ρ1c) − a2,

where ρ0 is normalized to 1 and ρ1 > 0.
We set n = 2 so output can be low (θ1) or high (θ2). We assume

π1(a) = exp(−ψa), π2(a) = 1 − exp(−ψa), ∀a ≥ 0,

where ψ > 0. We follow the literature to assume a Cobb-Douglas matching function
so that

M(ηA, γ − ηE) = α0ηA
α(γ − ηE)1−α

The above parameterization leaves us with the following parameters for the cali-
bration of the model:

θ1, θ2, ρ1, ψ, α0, c0, γ.

We target a measure of unemployed workers equal to 0.0342, a measure of em-
ployed workers equal to 0.6336, and a measure of those not in the labor force equal to
0.3320. These values are derived from The Current Population Survey (CPS) which
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provides monthly time series data on employment, unemployment and not-in-the-
labor-force, for the period between January 1994 and December 2003. These target
measures imply an unemployment rate of 5.12%, and a labor force participation rate
of 66.78%.

We target a job finding probability of 28.3%, following Fallick and Fleischman
(2004). We follow the literature to set α = 0.6. The literature reports a value of
α between 0.5 and 0.7 (Blanchard and Diamond (1989), Petrongolo and Pissarides
(2001)).

Davis, Faberman and Haltiwanger (2007) reports a job opening rate of 3.4% for
the period from December 2000 to January 2005.2 Using this information, we choose
the value of α0 to generate a job finding probability (fraction of the unemployed to
flow into employment) of 28.3%:

α0

(
γ − ηE

ηA

)1−0.6

= α0

(
0.034 ∗ 0.6336

0.0342

)1−0.6

= 0.283

which gives us α0 = 0.3405. In addition, given that

job opening rate =
γ − employment

employment

we obtain γ = 1.034 × 0.6338 = 0.6551.
We follow Shimer (2005) to set ω = 0.4 (Hosios 1990). We could alternatively set

ω = 0.5 without significantly change the calibration outcome.
We are now left with five free parameters θ1, θ2, ψ, ρ1, c0, and we choose their values

to target 6 (essentially 5) measures of the U.S. data: the measures of employment
(E), unemployment (U), non-participation (N); the rate of flow from employment
to unemployment, the job finding probability (rate of flow from unemployment to
employment), and the job opening rate (vacancies as a fraction of employment).

The following table gives the values of the parameters chosen.

Parameter Value

θ1 −0.5000
θ2 2.5000
ψ 0.6386
ρ1 1.2771
c0 0.0096

The following table compares the calibrated model with data.

2Their measure is based on the Job Openings and Labor Turnover Survey (JOLTS).
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Variable Data Model

fraction of employment 0.6336 0.6317
fraction of unemployment 0.0342 0.0350

fraction of not in the labor force 0.3320 0.3333
job opening rate 3.4% 3.7%

E to U probability 1.3% 1.26%
U to E probability 28.3% 29.1%

The model does a good job matching the targets. Note that conditional on em-
ployment, which is an independent target to match, the job openning rate essentially
measures the stock of vacancies in the economy.

The U.S. data shows a large flow from unemployment to not-in-the-labor-force,
reflecting the movements of discouraged workers, and the movements from unemploy-
ment to education. Our model lacks a channel for the flow from unemployment to
NLF.

The U.S. data also shows a significant flow of workers from not-in-the-labor-force
to employment. This reflects the fact that, in practice, firms search not only among
workers that are unemployed, but also among workers that are not in the labor force.
This mechanism is missing in our model. In the model, workers must be actively
looking for jobs before being matched with a firm.

Finally, notice that the flows from employment to unemployment and from em-
ployment to not-in-the-labor-force are much smaller in the model than in the data.
These are not surprising. In the data, a large fraction of the transitions from em-
ployment to not in the labor force are due to life-cycle reasons, or younger workers
quitting the labor force to obtain higher education. (??) These are not in our model.
In the data, the flow from not in the labor force to unemployment reflects perhaps the
movements of the previously discouraged workers and the young workers who enter
the labor market after finishing education.

5.2 Equilibrium

Figure 1 depicts the firm’s net gains from retaining (rather than terminating) the
worker as a function of the worker’s expected utility. In order to deliver a given level
of expected utility V to the worker, the firm’s net profits are U(V ) if it retains the
worker and U − v−1(V ) if it terminates the worker, and in equilibrium U = 0. The
value of the difference is shown in Figure 1. Obviously, termination is optimal if and
only the value of V is sufficiently small or sufficiently large. This is consistent with
Wang (2005).

Figure 2 depicts the law of motion for the employed worker’s expected utility as
a function of his current output. The worker’s expected utility is higer (lower) next
period if his current is higher (lower) this period.
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Figure 4 shows the (deterministic) law of motion for the worker’s assets: st+1 − st

as a function of st. There is critical asset level above which the non-employed worker
chooses not to enter the labor market. For sufficiently high asset levels, there is not
a non-negative Nash surplus between the worker and the firm.

The stationary distributions of employed workers and non-employed workers (un-
employed plus not-in-in-the-labor-force) are shown in Figures 5 and 6, respectively.
There is clearly a significant amount of welfare dispersion among the employed work-
ers.

At each point in time, looking forward each employed worker faces a stochastic
number of periods over which to remain employed. Figure 8 depicts the distribution
of the duration of the current job for a worker with four different level of starting
expected utilities. Obviously, the worker who has an expected utility that is neither
too low nor too higher will longer on this current job on average.

In equilibrium, a worker who leaves his job with an expected utility above the up-
per bound of the retention interval will not go back to the labor market immediately,
a worker who leaves his job with an expected utility below the lower bound of the
retention interval will go back to labor market right away. Hence, the former consists
of the employment to not-in-the-labor-force transition, and the latter consists of the
employment to unemployment transition.

Furthermore, each worker is born without any saving. As a result, his first job is
characterized by a contract delivering relatively low expected utility. It takes time for
him to establish a good record, and in turn be promised a relatively high expected
utility.

Figure 9 is based on simulation and shows that the probability to transition from
employment to unemployment decreaes with the age of the worker, while the proba-
bility to transition from employment to not-in-the-labor-force is increasing with the
age of the worker. These are consistent with findings in Nagypal (2005). 3.

5.3 Wage Dispersion

Hornstein, Krusell and Violante (2006) show that standard search matching models
can generate only a very small, 3.6%, differential between the average wage and
the lowest wage paid in the labor market, whereas the oberved Mm ratio–the ratio
between the average wage and lowest wage paid– is at least twenty times larger than
what the model observes. Hornstein, Krusell and Violante further show that the
extensions to the standard search and matching models can only modestly improve
their performance on accounting for the overved Mm ratio. As HKV argue, the logic
of the search/matching model implies that a higher wage dispersion is associated with
longer unemployment durations or a smaller probability of finding employment for

3In Nagypal (2005), the probability to transition from employment to not-in-the-labor-force for
younger workers is unusually high which might be explained by the higher education admission.
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the unemployed. Given that unemployment durations are typically short in the data,
wage dispersion cannot be large in the model. 4

This logic of the search/matching model does not apply in our model. In our
model, wage dispersion is driven by the provision of intertemporal incentives and
risk sharing. Wages of homogenous workers who start with the same initial expected
utility fan out over time as their outputs follow a stchastic process. In our model,
workers who produce a high output not only receive a higher wage in the current
period, but also will see their future utilities and wages increased. Likewise, and
workers that produce a low outputs will receive lower wages in the current period and
in the future. 5

Our model is capable of generating much larger wage dispersions than standard
search and matching models do. In the version of the model that is calibrated to the
U.S. data, the computed average wage is 0.4071, and the lowest wage paid is 0.0166,
and the Mm ratio is 24.5, similar to what Hornstein, Krusell and Violante observe in
the U.S. data.

Suppose we use the average wage of the workers in the lowest wage percentile as
the minimum wage in the calculation, then the computed Mm ratio is 13.89. Even if
we use the average wage of the workers in the 5th wage percentile as the minimum
wage in the calculation, the computed Mm ratio is 5.32, much larger than what the
search/matching models permit. Note that our model generates the same job finding
probability for the unemployed, and hence the same average unemployment duration,
as the calibrated search/matching models do.

6 Conclusion

In this paper, we have studied an equilibrium labor market model which modifies the
Mortensen-Pissarides framework by taking a dynamic contract approach to jobs and
job separations. The dynamic contract approach we take is based on a standard in-
formation friction: moral hazard. Dynamic contracting under moral hazard generates
equilibrium worker flows from emoloyment to unemployment, and to non-labor-force
particiation. Matching and bargaining bring unemployed workers to employment. As
in the data, in the model average wages increase with worker tenure, and on average
workers who have stayed longer with the firm face lower layoff probabilities. Our
model offers an important advantage over standard search and matching models: we
have shown quantitatively that our model generates wage dispersions that are similar
to those observed in the data while standard search-matching models cannot.

4As the paper explains, “The short unemployment durations, as in the U.S. data, reveal that
agents in the model do not find it worthwhile to wait because frictional wage inequality is tiny. The
message of search theory is that “good things come to those who wait”, so if the wait is short, it
must be that good things are not likely to happen.” (page 9.)

5The effect of the dynamic contracting on distribution was first discussed in Green (1987) and
Atkeson and Lucas (1991).
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7 Appendix

Proof of Proposition 3 We first show that
[
u(0) − φ(0) + β∆v(0), u(∞)

(1−β∆)

)
⊆ Φ. It

suffices to show that the set
[
u(0) − φ(0) + β∆v(0), u(∞)

1−β∆

)
is self-generating. Con-

sider the following recursive contract: For all V ∈
[
u(0) − φ(0) + β∆v(0), u(∞)

1−β∆

)
,

let
Ω(V ) = Θ, a(V ) = 0, ci(V ) = x(V ), Vi(V ) = v(0) + y(V ),

where x(V ) and y(V ) satisfy x(V ) ≥ 0, y(V ) ≥ 0, and

V = u(x(V )) − φ(0) + β∆[v(0) + y(V )]. (26)

This recursive contract obviously satisfies the constraints (6)-(9), the condition Vi(V ) ∈[
u(0) − φ(0) + β∆v(0), u(∞)

1−β∆

)
, and the constraints Vi(V ) ∈ v(R+) and Vi(V ) ≥

v(0); and it generates all V ∈
[
u(0) − φ(0) + β∆v(0), u(∞)

1−β∆

)
. This proves that[

u(0) − φ(0) + β∆v(0), u(∞)
1−β∆

)
is self-generating.

Next, we show that Φ ⊆
[
u(0) − φ(0) + β∆v(0), u(∞)

1−β∆

)
. We need only show that

there does not exist V ∈ Φ such that V < u(0)−φ(0)+β∆v(0). This is true because
the worker can always choose a = 0 to obtain an expected utility greater than or
equal to u(0) − φ(0) + β∆v(0), independent of the contract offered. Q.E.D.

Proof of Proposition 4 (ii) Let s ∈ SA. We show that the solution to the
following optimization problem exists and is unique:

maxO(V ) s.t. V ∈ Φ, V ≥ Vn(s), U(V ) + s− βU ≥ 0 (27)

where

O(V ) ≡ (U(V ) + s− βU)ω(V − Vn(s))1−ω. (28)

We first prove existence. Notice first that the constraint V ∈ Φ is not binding.
To show this, notice Vn(s) ≥ Vn(0), then use Proposition 3 and use the observation

Vn(0) = u(0) − φ(0) + β∆v(0).

Notice next that since U(V ) → −∞ as V → Vmax, the constraint V ≥ Vn(s) can
be replaced by Vn(s) ≤ V ≤ M for some sufficiently large M .

Since U(V ) is continuous, we have that the constraint set of problem (27), which
can now be written as {V ∈ R : Vn(s) ≤ V ≤ M, U(V ) + s − βU ≥ 0}, is closed
and bounded, and hence compact. Since the objective function O(V ) is continuous,
a solution to problem (27) exists.
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We now prove uniqueness. This takes 5 steps.
(i) Notice first that V is not optimal if V < V ∗, where V ∗ is defined in equation

(22). To show this, suppose V ∈ V ∗. Then V ′ = V + ε could make both the firm and
the worker strictly better off, for a positive but sufficiently small ε; a contradiction.

(ii) Notice next that since U(V ) is concave by Assumption 2, U(V ) and hence
U(V ) + s − βU are strictly decreasing over [V ∗, v(∞)/(1 − β∆)). Since s ∈ SA

requires U(V ∗)+ s−βU ≥ 0, the equation U(V )+ s−βU = 0 has a unique solution.
Denote it V (s). This allows us to rewrite the constraint U(V ) + s ≥ βU as

V ≤ V (s).

(iii) Notice next then

V ∈ {V ′ ∈ R : Vn(s) ≤ V ′ ≤ M, U(V ′) + s− βU ≥ 0}

if and only if
Vn(s) ≤ V ≤ V (s),

where it must hold that Vn(s) ≤ V (s) since the feasibility set cannot be empty. Now
suppose Vn(s) = V (s). Then of course there is a unique solution that maximizes
O(V ). In the following we show that the solution to the bargaining problem is unique
also in the case Vn(s) < V (s).

(iv) So suppose Vn(s) < V (s). Notice first that a solution must satisfy either
V = Vn(s) or V = V (s), or O′(V ) = 0.

Notice that V = Vn(s) cannot be optimal, because V ′ = Vn(s) + ε with ε positive
but sufficiently small can attain O(V ′) > 0 = O(V ). (Note it doesn’t matter whether
Vn(s) ≥ V ∗ or otherwise.)

Notice that V = V (s) cannot be optimal either, because V ′ = Vn(s) − ε with ε
positive but sufficiently small can attain O(V ′) > 0 = O(V ).

Therefore, any solution V to problem (27) must satisfy O′(V ) = 0, or

−U ′(V )
V − Vn(s)

U(V ) + s− βU
=

1 − ω

ω
. (29)

(v) Observe first that in order for (29) to have a solution, it must hold that
U ′(V ) < 0, otherwise the left hand side of the equation is non-positive while the right
hand side is strictly positive. Thus, wee need only consider the set of V s over which
the value function U(V ) is strictly decreasing. Given that U(V ) is concave, this in
turn implies that the left hand side of (29) is strictly increasing in V over the set of V s
that could potentially solve (29). It then follows that there at most one V = Vm(s)
that satisfies (29). Q.E.D. 6

6We have proved (ii) under the assumption that the value function U is differentiable. A proof
that does not rely on the differentiability of U is in the appendix.
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Proof of Lemma 5
Suppose 0 6∈ SA. That is, suppose 0 ∈ SI . Then v(0) = Vn(0) = Vmin = u(0)−φ(0)

1−β∆
.

Consider the following contract: it is σ0 for the first period, and then the worker
is given s = 0 to leave the firm. This contract delivers an expected utility equal to
V0 + β∆v(0) to the worker. Clearly V0 + β∆v(0) ≥ Vn(0) and V0 + β∆v(0) ∈ Φ. This
contract gives an expected profit equal to Π(V0)+βU to firm. Now U(V0 +β∆v(0)) ≥
Π(V0) + βU ≥ βU . So s = 0 ∈ SA. A contraction. Q.E.D.

Proof of Lemma 6 Let v be well defined and continuous. Let s2 > s1 ≥ 0.
(i) That Vn(s) is well defined and continuous is because the objective function is

continuous the constraint correspondence is compact. Use then the theorem of the
maximum. To show that Vn(s) is strictly increasing in s, notice that with s2, the
worker can always choose to have strictly more consumption in the current period
while setting his future assets equal to that with s1.

(ii) We show that the function Vm(s) is also continuous. This is the case because:
(a) The objective function in (17) is continuous in V . (b) Given U(V ) → −∞ as
V → Vmax, there is some M > 0 sufficiently large such that for each s ∈ SA, the
constraint V ≥ Vn(s) can be replaced by Vn(s) ≤ V ≤ M . This implies a constraint
correspondence that is compact valued and continuous. (c) Apply the theorem of the
maximum.

We next show that Vm is an increasing function. Observe first that given U ′(V ) < 0
at the optimal V , and Vn(s) is increasing in s, the left hand side of (29) is strictly
decreasing in s. Remember we have already shown that the left hand side of (29) is
increasing in V . So Vm(s) must be increasing in s.

(iii) If s1, s2 ∈ SA or s1, s2 ∈ SI , then v(s2) ≥ v(s1) follows directly right from (i)
and (ii). Suppose s1 ∈ SI but s2 ∈ SA. Then

v(s2) = ρVm(s2) + (1 − ρ)Vn(s2) ≥ Vn(s2) ≥ Vn(s1) = v(s1).

Suppose s1 ∈ SA but s2 ∈ SI . Suppose v(s1) > v(s2). Then

ρVm(s1) + (1 − ρ)Vn(s1) ≥ Vn(s2),

which in turn implies Vm(s1) ≥ Vn(s2). This contradicts s1 ∈ SI since

U(Vm(s1)) + s2 − βU > U(Vm(s1)) + s1 − βU ≥ 0.

Finally, since ρ < 1, v is strictly increasing on R+. Q.E.D.

Proof of Theorem 7 1. Let (Y, d) denote the space of all bounded and continuous
functions f : R+ → X under the sup norm, denoted d. (Note that boundedness is
needed for R+ is not compact.) Y is a complete normed vector space.
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2. Define a mapping Γ as follows:

∀v ∈ Y and ∀ s ∈ R+, Γ(v)(s) =

{
ρVm(s) + (1 − ρ)Vn(s), if s ∈ SA

Vn(s), if s ∈ SI
(30)

subject to (14)-(17).
Notice that given Lemma 6, the function Γ(v) is well defined for all v ∈ Y .

3. We show that Γ maps from Y to Y , that is, Γ : Y → Y . We must show that Γ
preserves boundedness and continuity. That Γ preserves boundedness is obvious. We
now show that Γ preserves continuity. Let v ∈ Y .

(3a) From Lemma 5, we know that the function Vn(s) is continuous and strictly
increasing on R+. We also know that the function Vm(s) is continuous and increasing
on SA.

(3b) Observe that SI is an open set in R+ and hence SA is closed. To show this,
let s ∈ SI . Since 0 ∈ SA by Lemma 4, we have s > 0. This implies U(V )+s−βU < 0
for all V ∈ Φ such that V ≥ Vn(s). Given the continuity of U and Vn, there exists
ε > 0 such that (s− ε, s+ ε) ⊆ SI .

(3c) Since SI ∈ R+ is open, it can be written as an union of disjoint open intervals
in R+.

(3d) Observe next that [0, (Vn)−1(V ∗)] ⊆ SA. This is because : βU ≤ U(V ∗) by
equation (22), the value function U(V ) is concave by Assumption 2, and the function
Vn(s) is continuous and strictly increasing by Lemma 5.

(3e) With (3c) and (3d), there exists a vector {b0, ai, bi, i = 1, 2, ...,m} ⊆ R+ such
that

SA = [0, b0] ∪
(

m⋃
i=1

[ai, bi]

)
where

(Vn)−1(V ∗) ≤ b0 < a1 ≤ b1 < · · · < am ≤ bm

and the values of m and bm may be infinity.
(3f) Clearly, Γ(v) is continuous on R+�{b0, a1, b1, · · ·, am, bm}. So, Γ(v) is contin-

uous on R+ if and only if Vm(s) = Vn(s) for s ∈ {b0, a1, b1, · · ·, am, bm}.
Suppose Vm(bi) > Vn(bi) ≥ V ∗ for i ∈ {0, 1, · · ·,m}, Since Vn is continuous, there

exists ε > 0 such that [bi, bi + ε) ⊆ SA, a contradiction.
Suppose Vm(ai) > Vn(ai) ≥ V ∗ for i ∈ {1, · · ·,m}. since Vn(ai) > V ∗, U is strictly

decreasing for V ≥ V ∗. This implies that U(Vn(ai))+ai −βU > 0. There exists ε > 0
such that (ai − ε, ai] ⊆ Sa which is a contradiction.

We have proved that the function Γ(v) is continuous.

4. We show that the mapping Γ is a contraction. Since the underlying space is a
normed vector space of bounded and continuous functions, we need only verify that
the Blackwell sufficient conditions are satisfied.
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(Monotonicity) Let v1, v2 ∈ Y and v1 ≥ v2. We must show that Γ(v1)(s) ≥
Γ(v2)(s) for all s ∈ R+.

Let Si
A, Si

B, V i
n, V i

m (i = 1, 2) denote the sets SA and SB and the functions Vn and
Vm induced by vi through (14)-(17). Notice first that V 1

n ≥ V 2
n .

(i) Suppose s ∈ S1
A ∩ S2

A. Then the property of the CES objective function
guarantees that V 1

m(s) ≥ V 2
m(s), and hence Γ(v1)(s) ≥ Γ(v2)(s).

(ii) Suppose s ∈ S1
I ∩ S2

A. We need only show V 1
n (s) ≥ V 2

m(s), which holds, for
otherwise s ∈ S1

A.
(iii) Suppose s ∈ S1

I ∩ S2
I . In this case Γ(v1)(s) = V 1

n (s) ≥ V 2
n (s) = Γ(v2)(s).

(iv) Suppose s ∈ S1
A ∩ S2

I . In this case, V 1
m(s) ≥ V 1

n (s) ≥ V 2
n (s), implying s ∈ S2

A,
a contradiction. So s ∈ S1

A ∩ S2
I cannot be the case.

We therefore have shown that the mapping Γ is monotonic.

(Discounting) Let v1, v2 ∈ Y and let v2 = v1 + a for any a > 0. We show that
Γ(v2)(s) ≤ Γ(v1)(s) + β∆a for all s ∈ R+.

Observe first that V 2
n (s) = V 1

n (s) + β∆a for all s ∈ R+.
Consider first the case s ∈ S1

A ∩ S2
A. The desired result in the case holds trivially

if the maximized Nash product is zero. In the following, we consider the case where
the maximized Nash product is strictly positive.

Let

ϕi = −1 − ω

ω

U(V i
m(s)) + s− βU

V i
m(s) − V i

n(s)
, i = 1, 2,

where ϕi for i = 1, 2 is the slope of the value function U(V ) at optimum, i.e., at
V = V i

m(s).
Given the concavity of U and the differentiability of indifference curve, U has to

be under the following straight lines

fi(x) = ϕi(x− V i
m(s)) + U(V i

m(s)), i = 1, 2

Suppose V 2
m(s) > V 1

m(s) + β∆a. Then ϕ1 < ϕ2 < 0. Therefore,

U(V 2
m(s)) ≤ f1((V

2
m(s))) ⇒ U(V 1

m(s)) > f2((V
1
m(s))),

a contradiction. So, we conclude that V 2
m(s) ≤ V 1

m(s) + β∆a.
The cases s ∈ S1

A −S2
A, s ∈ S2

A −S1
A, and the case s /∈ S1

A ∪S2
A are straightforward

to analyze and are left for the reader. This proves that the mapping Γ has the
discounting property and hence we have shown that Γ is a contraction.

5. By the contraction mapping theorem then, v ∈ Y and is the unique fixed point
of Γ. So v is continuous and the theorem is proved. Q.E.D.

Proof of Proposition 9 Suppose i ∈ Ω but U(Vi) < U − v−1(Vi), then move i
from Ω to Ω′ while not changing the values of a, ci and Vi. The modified contract
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would remain feasible, but the firm’s value is strictly increased. On the other hand,
suppose U(Vi) > U − v−1(Vi) but i 6∈ Ω. Then move i from Ω′ to Ω to increase the
firm’s value. Q.E.D.

Proof of Proposition 10 We prove by way of contradiction. Suppose otherwise.
Then there exists a strictly monotonic sequence {sq} such that sq ∈ SI for all q, and
sq → 0 as q → ∞.

Next we show that it must hold that Vn(sq) → 0 as q → ∞. Since sq ∈ SI ∀q,

v(sq) = Vn(sq) = max
0≤c≤sq

{u(c) − φ(0) + β∆v[(1 + r)(sq − c)/∆]}.

Let q → 0 on both sides of the above equation to obtain

u(0) − φ(0) + β∆v(0) = v(0)

or
v(0) = [u(0) − φ(0)]/(1 + β∆) = 0.

So Vn(sq) → v(0) = 0 as q → ∞.
Now for each q and sq, consider the following contract for the unemployed worker

with assets sq. The worker is employed for one period. For the period the worker
is employed, his compensation is determined by σ0. The worker is then terminated
with assets s. So the worker’s utility under this contract is H0 +β∆v(sq). For q large
enough, it must then hold that

H0 + β∆v(sq) ≥ (1 − β∆)Vn(sq) + β∆Vn(sq) = Vn(sq).

This holds because (a) sq ∈ SI so v(sq) = Vn(sq); (b) H0 > 0; and (c) Vn(sq) → 0 as
q → ∞.

Finally, notice that for q large enough, it holds that

Π(H0) + sq − β∆sq + βU > βU.

Thus we have shown sq ∈ SA for q large enough. A contradiction. Q.E.D.

Proof of Proposition 11 That the worker is terminated with expected utility
V implies

U(V ) < U − v−1(V ). (31)

Now this worker would go immediately to the market to look for a new match if and
only if

∃ V ′ ≥ Vn(v−1(V )) such that U(V ′) + v−1(V ) ≥ βU.

But this implies the existence of Vm(v−1(V )) and it holds that Vm(v−1(V )) ≥ V . Let
V ′ = Vm(v−1(V )). Then

U(V ′) + v−1(V ) ≥ βU. (32)

Suppose U = 0. Equations (31) and (32) together imply U(V ′) > U(V ). Q.E.D.
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Figure 1: Firm’s net gains from retaing the worker
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Figure 2: Law of motion for the employed worker’s utility
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Figure 3: Law of motion for the non-employed worker’s assets
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Figure 4: Distribution of employed workers
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Figure 5: Distribution of non-workers
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Figure 6: Distribution of employment durations
29



Figure 7: Probabilities of termination
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Figure 8: Wage versus tenure
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Figure 9: The wage distribution
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