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Introduction

 RBC theory: technology expansionary.

 Gali (AER 1999) and Basu et al. (AER 2006): technology
contractionary for It & Nt.

 Two implications: (i) technology shocks not main driving
force; (ii) sticky prices.

 "the RBC theory is dead" (Francis and Ramey, JME 2005).



 It is possible that technology shocks not important and prices
sticky.

 However, the finding of Gali and Basu et al. does not
logically imply these are indeed the case.

 (i) the sign of the initial impulse responses to technology
shocks does not imply lack of procyclicality.

 (ii) contractionary effect of technology shocks does not
necessarily reject flexible prices – the main ficus of our
paper.



 In what follows, we first present empirical regularities that
appear to be profoundly inconsistent with flexible prices.
Then we show that this is not the case.
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Figure 2. Sectorial Response to Agg. Tech. Shock
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Figure 3. Response of Real Wage and Real Rate.
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Figure 4. Distribution of Correlations



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

O
ut

pu
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

-2

-1.5

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10

In
pu

t

-2

-1.5

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

1 2 3 4 5 6 7 8 9 10
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

1 2 3 4 5 6 7 8 9 10
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

1 2 3 4 5 6 7 8 9 10

H
ou

rs

Fig 5. Sectorial Response to Sector-Specific



 Why tech shock contractionary and asymmetric?

 Our approach: Leontief technology at the firm level, with
firm entry and exit. Prices fully flexible.

 Our model provides micro foundation to aggregate
production functions, and is identical to a standard
frictionless RBC model in aggregate dynamics if no
time-to-build.

 However, with time-to-biuld, our model is able to explain all
of the aforementioned empirical facts.



Benchmark Model

Final Good (y)
 Identical producers i ∈ 0,t, each producing one unit of

final good. (Imagine a production assembly line with fixed
production capacity.)

 Entry cost  . Prob of exist  t. Zero profit  total
number of producers t.

 Production function: y  x. Normalization: py  1.



 Demand for input:

x 
1 if px ≤ 1

0 if px  1
.

 Profit:

 

1 − px if px ≤ 1

0 if px  1
.

 Aggregate supply of output: Y  
0


ydi  , aggregate

demand for input is 
i0


xdi  .



Intermediate Good:
(flour)                                             

Final Good: 
(pizza)                                      

Aggregate Output:
(# of pizzas)                                                   
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Figure 6. Production Structure.



 The value of a firm (with time-to-build):
Vt  Et t1 t1

 Et∑
j1



 j1 
i1

j

1 − ti  tj1 tj1,



Vt  Et t1 t1  1 − t1Vt1.

 Free entry  Vt  .

 Evolution of :
t1  1 − tt  st,

where s  new entrants.



Intermediate good
 Infinitely many identical intermediate good producers, with

production function:
Xt  AtKt

Nt
1−.

 Profit maximization gives

px
X
K  rt  ,

1 − px
X
N  wt.

 Perfect competition  price equals marginal cost:

px  1
A

r  


 w
1 − 

1−
.

 One representative firm → aggregate supply of intermediate
good is X.



Household

 Net profit income (from final good producers):

t  
i0


 tdi − st.

 Utility maximization:

maxE0∑
t0



 tlogCt   log1 − Nt,

s.t.
Ct  Kt1  wtNt  1  rtKt  t.



General equilibrium
  Et t1 t1  1 − t1,     1

t1  1 − tt  st,     2

 t  1 − pxt,     3

pxt
Yt
Kt

 rt  , 1 − pxt
Yt
Nt

 wt     4

wtCt
−1  1 − Nt−1,     5

Ct
−1  EtCt1

−1 1  rt1.     6

Ct  Kt1 − 1 − Kt  st  AtKt
aNt

1−,     7



Equivalence to standard RBC model

 Suppose   1 and no time-to-build.

 Then Vt   t  . Hence pxt  1 −  and st  t.

 The aggregate resource constraint becomes
Ct  Kt1 − 1 − Kt  1 − AtKt

Nt
1−.

 The dynamics of this model are the same as those implied by
a standard frictionless RBC model (e.g., King, Plosser and
Rebelo, 1988).



Impulse responses
 Calibration.   0.96,  0.4,  0.1, N̄  0.2 (about 35

hours per week). Let   0.1. The results are not sensitive to
these parameter values.

 Assume logt   log t. In the U.S. (1949-1996), 1%
increase in  reduces the business failure rate by 6%, hence
we set   −6.

 The average business failure rate (at annual frequency) for
the U.S. economy implies ̄ ≈ 0.1. We simulate the model
using two alternative values, ̄  0.1,0.25. These values
imply a steady-state markup in the range of 1.5  4%.







Multisector Model
 The production function:

y  
j0

1
xjdj.

where the price of xj is pj.

 The demand for xj:

xj 

aj if pj ≤ 1

0 if pj  1
,

where 〈aj is the input-output coefficient matrix.



 The production function for intermediate good j:
Xj  AZjFKj,Nj.

Intermediate Goods:                                            

Final Good: 
(computer)                                      

Aggregate Output:
(# of computers)                                                
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Figure 9. Multi-Sector Model.

 The gross profit for a final good producer is
  y − 

0

1
ajpjdj.



 The rest of the model’s structure is similar:

Vt  Et t1 t1  1 − t1Vt1, t1  1 − tt  st,
y  

j0

1
ajdj  1, Yt   i0

t ydi  t,   
i0


di − s,

Ct  Kt1  wtNt  1  rtKt  t, where K  
0

1
Kjdj and

N  
0

1
Njdj. The first order conditions for the household are

the same as before.

 Profit maximization for each intermediate good firm in sector
j gives pj

Xj

Kj
 r   and 1 − pj

Xj

Nj
 w. → Marginal cost

of good j:

pj  1
AZj

r  


 w
1 − 

1−
.



 The aggregate output

Y  
i0

 
j0

1
ajdj di  

j0

1
ajdj,

where aj  Xj is the aggregate demand for intermediate
good j.

 Hence, Xj

Xi
 aj

ai , ZjKj
aj  ZiKi

ai and ZjNj
aj  ZiNi

ai .

 → Kj  
0

1 ai
Zi

di aj

Zj
K, Nj  

0

1 ai
Zi

di aj

Zj
N. Take the

normalization, 
0

1 ai
Zi

di  1, we have



Kj 
aj
Zj

K,

Nj 
aj
Zj

N.

 Substituting Kj and Nj into Xj  AZjKj
Nj

1− gives

Xj  ajAKN1−.

 In equilibrium the final good production function becomes

Y  
j0

1
ajdj  

j0

1
Xjdj  AKN1−.



Impulse responses
 Impulse responses of aggregate variables, such as

Y,C, I,N, to aggregate technology shocks are the same as
before.

 Impulse responses of sectors to aggregate and sector-specific
technology shocks:

Kj 
aj
Zj

K,

Nj 
aj
Zj

N.

Xj  ajY.
 Equivalence to standard RBC model: Yes, if   1 and no

time to build.



Explaining Heterogeneity
 Although our model is broadly consistent with stylized facts,

it lacks the ability to explain heterogeneous responses across
sectors.

 Consider final good firms are heterogenous because each
firm i gets a different draw of aj. Namely, firm i can
transform one unit of intermediate good j into ai, j units of
final good. → Input-output matrix  ai, j i∈0,,j∈0,1.

 The production function:

yi  
0

1
ai, jIi, jdj,

where Ii, j  1 if ai, j ≥ pj and Ii, j  0 if ai, j  pj.





Impulse responses to sector-specific
technology shocks.
 Around the steady state the percentage change of factor

demand with respect to Zj are given by

K̂j   j − 1Ẑj,

N̂j   j − 1Ẑj;

 Hence, allowing for heterogeneity in fja can explain the
heterogenous responses of inputs across sectors. This has
little effects on the impulse responses of the model to
aggregate technology shocks.



Responses to Demand.



Discussion
 A micro level rigidity in factor-demand does not by itself

imply any aggregate rigidities, as long as  is variable.

 Example 1:

yi   ai,jIi, jdi,

where ai,j  Pareto distribution Fa  1 −  1
a



yi  aik  bin,
where k is capital, n is labor, and ai,bi  Pareto
distribution.

 Let the demand functions be
k   if ai ≥ r, otherwise k  0;

n   if bi ≥ w, otherwise n  0;
where r,w stand for prices of capital and labor.

 If   1 and no time-to-build, we obtain

Y  A  1
 K −1

   1
 L −1



−1 .



 Example 3: If the Pareto distribution is replaced by the
Uniform distribution, then

Y  
0

1
Xjdj − 

2

1
2 

0

1
Xj

2dj
1
2
.

 Example 4: Define production function

yi  
0

1
hai,jIi, jdj,

where h is a truncated linear function satisfying

ha 
a if a ≤ amax

amax if a  amax

,where amax ∈ 1, is an

arbitrary truncation point.



 Under Pareto distribution (  1, we have

Y  1  amax

exp exp 
0

1
logXjdj ,

which is the Cobb-Douglas function with continuum of
inputs.

 A special case:
yi  haik  hbin.

We have

Y  B̃K

 L


 .




