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Abstract

This paper analyzes the formation of networks when players choose
how much to invest in each relationship. We suppose that players
have a fixed endowment that they can allocate across links, and in the
baseline model, suppose that link strength is an additively separable
and convex function of individual investments, and that agents use the
path which maximizes the product of link strengths. We show that
both the stable and efficient network architectures are stars. However,
the investments of the hub may differ in stable and efficient networks.
Under alternative assumptions on the investment technology and the
reliability measure, other network architectures can emerge as efficient
and stable.
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1 Introduction

Following a long tradition in sociology, economists have recently focussed
attention on the role of social networks in economic activities. One of the
main contributions of this emerging literature has been to propose strategic
models of network formation, where self-interested agents establish bilateral
links in order to maximize their utility. Following the pioneering work of Bala
and Goyal (2000) and Jackson and Wolinsky (1996), most of the literature
assumes that agents make a discrete decision – namely, choose whether or
not to invest in a link of fixed quality. However, in a wide variety of contexts
arising in both formal and informal networks, agents do not only choose with
whom they link, but also how much they spend on every link they form. In
this paper, our objective is to study a model of network formation, where
the quality of links is endogenously chosen by the agents.1

Our analysis is centered around communication networks – networks
where agents derive positive benefits from the agents with whom they are
connected, with benefits decreasing as the distance increases between two
agents. Communication networks can either be formal networks (like the
phone or internet), or informal networks of social relations.2 In formal com-
munication networks, the reliability of a communication link depends on the
physical characteristics of the connection; in informal social networks, the
strength of a social link depends on the frequency and the length of social
interactions. In both cases, it is commonly observed that different links may
have different quality, and that agents can choose the amount they invest on
every relation. Communication networks thus represent an obvious testing
ground for a theory of network formation with endogenous link strength.

The modeling of network formation with endogenous link strength poses
new conceptual difficulties, which were absent in the literature where links
have a fixed, exogenous value. First, the technology transforming individual
investments into the quality of a bilateral link needs to be specified. In this
exploratory analysis of the formation of links with endogenous quality, we

1See Goyal (2005), which also emphasizes the importance of studying networks where
the strength of links can be chosen endogenously.

2The role of social networks as communication devices has long been acknowledged.
The use of social networks in job referrals has been studied, among others, by Granovetter
(1974), Boorman (1975), Montgomery (1991), Calvo-Armengol and Jackson (2004). A
classic reference on the role of social networks in the diffusion of innovation is Coleman,
Katz and Menzel (1966).
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focus attention on the simple situation where agents’ investment decisions
are independent. We also assume that agents may face a fixed cost in the
formation of links. This leads us to specify the strength of a link as an addi-
tively separable and convex function of agents’ investments. In this setting,
agents do not need the consent of their partner to form a link, and the model
can be interpreted as a generalization of Bala and Goyal (2000)’s version of
one-sided, two-way flow model of link formation. In a later Section of the
paper, we also provide a partial analysis of the case of perfect complements,
where the strength of a link is given by the minimum of both parties’ invest-
ments. This case is reminiscent of Jackson and Wolinsky (1996)’s model of
link formation with consent, and our analysis generalizes their approach to
handle weighted networks where agents optimally “match” investments on
their bilateral link.

The second difficulty stems from the modeling of benefits from indi-
rect connections. In the existing literature, it is assumed that agents al-
ways choose to connect through the shortest path, and that indirect bene-
fits are a decreasing function of the length of the connection.3 When link
strength is endogenous, it is natural to suppose that agents choose to connect
through the path with the highest reliability (measured by the product of
link strengths normalized to belong to (0, 1)) – which is not necessarily the
shortest path. However, this is not the only way to model the reliability of
an indirect connection. At the end of the paper, we consider an alternative
model, where the value of an indirect connection depends on the weakest link
along the path.

Throughout the paper, we consider the following problem. We suppose
that agents are endowed with a fixed endowment X, that they allocate across
different connections. Our first task is to compute the strongly efficient
network architecture, which maximizes the sum of benefits of all agents. In
a second step, we characterize the set of stable networks, obtained when
agents form relations in a voluntary, decentralized manner. Because of the
well-known coordination problem in noncooperative games of bilateral link
formation, we consider two equilibrium concepts. We say that a network is
Nash stable if it is immune to individual deviations, and strongly pairwise
stable if it is immune to deviations by individuals as well as pairs of agents.

3Jackson and Wolinsky (1996) specify a decay factor δ ∈ (0, 1) and assume that indirect
benefits are given by δtv where t is the length of the shortest path connecting two agents
and v a fixed parameter. For most of their analysis, Bala and Goyal (2000) suppose that
the value of a connection is independent of the distance between two agents.
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The main results of our study can be summarized as follows. We first show
that the efficient network must be a star, that is a network where one agent
(the hub) is connected to all other agents, while peripheral agents are only
connected with the hub. Moreover, when link strength is a linear function of
individual investments, the unique efficient network is the symmetric star in
which the hub invests equally on all the links.

We also have a characterization of stable networks. If link strength is
a strictly convex function of individual investments, then the unique Nash
stable network is the star where the center of the star invests fully on just one
link. If link strength is a linear function of individual investments, then only
stars can be strongly pairwise stable. We provide a necessary and sufficient
condition for the existence of strongly pairwise stable networks in terms of
X and the number of individuals. The larger the number of individuals, the
weaker is the sufficient condition.

In the penultimate section of the paper, we consider two extensions of
the basic framework. First, we retain the assumption that link strength
is a separable, convex function of individual investments, but consider a
model of weakest-link reliability, where the value of an indirect connection
is independent of the distance, and is only affected by the strength of the
weakest link along the path. In this case, the symmetric star again emerges
as an efficient network architecture.4 The symmetric star is also strongly
pairwise stable, as any deviation from a network where all links have equal
strength is bound to decrease the value of the weakest link.

Second, we consider the case where individual investments act as perfect
complements in the “production” of link strength. The efficient network
architecture is now very different. Trees cannot be optimal, because end
players of the network waste part of their endowments, and have an incentive
to invest what remains from their endowment on a new link. Regular graphs
(where all agents have the same number of links) are likely candidates for
efficient network architectures, and we show that for small numbers of players,
the circle is in fact the efficient network architecture. However, when the
number of players increases, the circle can be dominated by other network
architectures. Finally, we note that the circle is always strongly pairwise
stable.

Our results are related to the results obtained in the discrete link for-

4However, this is not the unique efficient architectures - other networks which generate
the same distribution of link strengths are equally efficient.
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mation literature (Bala and Goyal (2000)’s two-way flow model with decay,
Hojman and Szeidl (2007)’s model with strong decreasing returns to scale
and decay and Feri (2007)’s evolutionary model) and we now comment on
the relation between our analyses. Bala and Goyal (2000) also characterize
the star as the efficient network architecture in their two-way flow model with
decay when the cost parameter is such that neither the empty nor the com-
plete graph are efficient (Bala and Goyal (2000), Proposition 5.5 p. 1220).
However, Nash equilibrium has little predictive power in their model, and
even when they resort to the refinement of strict Nash equilibria, they are
unable to obtain a complete characterization in the two-way flow model with
decay (see Bala and Goyal (2000), Proposition 5.3 p. 1215).) By placing ad-
ditional restrictions on the benefit function and the effect of decay, Hojman
and Szeidl (2007) are able to fully characterize the set of Nash equilibria,
and show that it is a periphery-sponsored star (Hojman and Szeidl (2007),
Theorem 1.) However, the characterization of efficient networks in their
model is complicated (see the Example 1 and Proposition 1 in Hojman and
Szeidl (2007)). Feri (2007) also characterizes periphery-sponsored stars as
the unique stochastically stable equilibria of his model.

The similarity between these characterizations and our results are partly
driven by our assumption on the link formation technology. Because the
formation of links typically involves a fixed cost, we find natural to assume
that link strength is a convex function of individual investments. As a con-
sequence, agents have an incentive to concentrate their investments on a
single link, and the model appears to be similar to a model of discrete link
formation, where every agent forms a single link of maximal intensity. How-
ever, there remain significant differences between our model of endogenous
link quality and discrete link formation models. First, because we consider a
richer set of weighted networks, agents have more opportunities. To establish
that the star is the efficient network in our setting is a much harder task than
in Bala and Goyal (2000)’s analysis, because we are optimizing over a much
larger set of feasible networks. Similarly, in the noncooperative game of link
formation, we characterize best responses in a larger space of strategies. Sec-
ond, in our setting, the fixed cost can be made arbitrarily low, and we devote
much attention to the case of linear investments where the fixed cost is equal
to zero. With linear investments, agents have no a priori reason to concen-
trate their investments on a single link, and the emergence of equilibrium
networks where some agents invest all their resources in a single link is not
driven by the assumption on technology but by the general structure of the
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model. Finally, in our analysis, the concentration of investments in a single
link is an equilibrium result rather than an assumption. As we will argue
below, the fact that agents could have invested in multiple links changes the
analysis deeply, and is the driving force behind our sharp characterization of
Nash and strongly pairwise equilibria of the game of link formation.

Related Work
Given the obvious importance of networks with links of varying strength,

a number of recent papers have proposed models where agents choose how
much to invest in a relationship. In some of these models, agents choose their
investment after the network has been established. For example, Bramoulle
and Kranton (2006) study the agent’s incentives to provide a public good
once the network is fixed. In a specific model of strategic alliances among
firms, Goyal and Moraga-Gonzales (2001) consider a two-stage model where
firms first form links and then decide their R&D investment. This is a model
of ”nonspecific networking” because the firm chooses the same investment
across all its links. Durieu, Haller and Solal (2004) also consider a model
of nonspecific networking. Agents choose a single investment, which applies
to the links with all other agents. Still in the framework of nonspecific net-
working, Cabrales, Calvo-Armengol and Zenou (2007) propose an axiomatic
derivation of the relation between pairwise link intensities and agents’ ”so-
cialization intensities”, represented by scalars. Brueckner (2003) considers
a model of friendship networks. Agents choose to invest in relationships,
and the value of indirect benefits is given by the product of the strength
of links. For most of his analysis, Brueckner (2003) concentrates on three
player networks, and studies the effect of the network structure on the invest-
ment choices in the complete and star networks. Other papers, more closely
related to ours, consider the formation of the network and the choice of in-
vestments as simultaneous. Goyal, Konovalov and Moraga-Gonzales (2003)
extend their analysis of cost-reducing alliances by allowing firms to choose
different investments on different links. Rogers (2005) proposes a different
model of network formation with endogenous link quality. In his model, links
are directed and can be interpreted as the influence that every agent has on
another agent. As in our paper, agents allocate a fixed endowment on dif-
ferent relationships. Agent’s utilities depend on the values of other agents in
their neighborhoods, and are defined in a circular way. Two different models
are studied: one where agents receive value from their neighbors, and one
where they give values to their neighbors. In this environment, which is very

6



different from ours, Rogers (2005) characterizes Nash and efficient network
structures, emphasizing the importance of heterogeneity across agents.

2 Model and Notations

Investments and link strength
Let N = {1, 2, ..., n} be a set of individuals. Individuals derive benefits

from links to other individuals. These benefits may be the pleasure from
friendship, or the utility from (non-rival) information possessed by other
individuals, and so on. In order to fix ideas, we will henceforth interpret
benefits as coming from information possessed by other individuals. Each
individual has a total resource (time, money) of X > 0, and has to decide on
how to allocate X in establishing links with others.5

Let xj
i denote the amount of resource invested by player i in the relation-

ship with j. Then, the strength of the relationship between i and j, sij is
assumed to be a symmetric, additively separable function of xj

i and xi
j,

sij = φ(xj
i ) + φ(xi

j)

where φ(.) is a nondecreasing, convex function. Furthermore, we suppose
that φ(0) = 0 and φ(X) < 1/2 so that sij ∈ (0, 1).

Some remarks are in order. First, we consider a setting where link strength
is an additively separable function of investments. This implies that an
agent’s decision to allocate his endowment over direct links is independent of
his neighbors’ decisions. However, this does not mean that an agent’s invest-
ment strategy is independent of the choices of other agents, as these choices
affect the value of indirect links and hence the payoffs obtained in the game.
Second, we consider a model with nondecreasing returns to investment. While
this assumption may seem at odds with the classical literature on produc-
tive investments, we strongly believe that convexity is the right assumption
to make when one discusses investments in communication links. The for-
mation of any network involves a fixed cost component. Whenever agents
need to invest a fixed initial amount in a communication link, the quality
of the communication link is likely to be a convex function of investments.
In fact, the literature on discrete link formation assumes an extreme form of

5To keep matters simple, we thus assume that agents do not incur a monetary cost of
investment, but only an opportunity cost.
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convexity, where φ(xj
i ) = 0 as long as xj

i < c and φ(xj
i ) = s when xj

i ≥ c.
Finally, without loss of generality, we can normalize units of investment, so
that every link strength is a number between 0 and 1.

Link strength and reliability
We say that individuals i and j are linked if and only if sij > 0. Each

pattern of allocations of X, that is the vector x ≡ (xj
i ){i,j∈N,i6=j} results in

a weighted graph, which we denote by g(x).6 We say that ij ∈ g(x) if
min(xj

i , x
i
j) > 0.

Given any g, a path between individuals i and j is a sequence i0 =
i, i1, ..., im, ..., iM = j such that im+1im ∈ g for all m ∈ {0, . . . ,M − 1}. Two
individuals are connected if there exists a path between them. Connectedness
defines an equivalence relation, and we can partition the set of individuals
according to this relation. Blocks of that partition are called components.

Suppose i and j are connected. Then, the benefit that i derives from j
depends on the reliability with which i can access j’s information. There
are different ways to model how the strength of links affects the reliability
of the communication channel. In our view, the most natural interpretation
is that the strength of a link is an index of the quality of the transmission,
so that messages sent along stronger links are more likely to be delivered
without delay or distortion. With this interpretation, the reliability of any
path between i and j is given by the product of the link strengths along the
path. For any path p(i, j) = i, i1, ..., iM−1, j, we thus define

r(p(i, j)) = sii1 ...sim−1im ...siM−1j.

We assume that agents always choose to transmit information along the path
with the highest reliability, and for any connected pair of agents i, j, we let
p∗(i, j) denote the most reliable path in the set of all paths P (i, j)

p∗(i, j) = arg max
p(i,j)∈P (i,j)

r(p(i, j)).

The benefit of the connection from i to j is then given by

R(i, j) = r(p∗(i, j)) = max
p(i,j)∈P (i,j)

r(p(i, j))

6To simplify notation, we will sometimes ignore the dependence of g on the specific
pattern of allocations.
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The total utility that agent i obtains in the weighted graph g can then be
computed as:

Ui(g) =
∑
j 6=i

R(i, j),

and the total value of the graph is given by

V (g) =
∑

i

Ui(g).

Efficient and stable networks
We now define efficient and stable graphs. The notion of efficiency that

we use is the strong efficiency notion introduced by Jackson and Wolinsky
(1996).

Definition 1 A graph g is efficient if V (g) ≥ V (g′) for all g′.

We now describe the concepts of stability that will be used in this paper.
Given any pattern of investments x, and individual i, (x−i, x

′
i) denotes

the vector where i deviates from xi to x′
i. Similarly, (x−i,j, x

′
i,j) denotes the

vector where i and j have jointly deviated from (xi, xj) to (x′
i, x

′
j).

Definition 2 A graph g(x) is Nash stable if there is no individual i and x′
i

such that Ui(g(x−i, x
′
i)) > Ui(g(x)).

So, a graph g induced by a vector x is Nash stable if no individual can
change her pattern of investment in the different links and obtain a higher
utility.

Definition 3 A graph g(x) is strongly pairwise stable if it is Nash stable and
there is no pair of individuals (i, j) and joint deviation (x′

i, x
′
j) such that

Uk(g(x−i,j, x
′
i,j)) > Uk(g(x)) for k = i, j

A Nash-stable graph is strongly pairwise stable if no pair of individu-
als can both be strictly better off by changing their pattern of investment.
Jackson and Wolinsky (1996) define a weaker notion of stability - pairwise
stability. They basically restrict deviations by assuming that only one link at
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a time can be changed. Our current definition corresponds to the definition
of pairwise stability used by Dutta and Mutuswami (1997).7

We also recall that a tree is an acyclic connected network, (a connected
network for which there does not exist a sequence of nodes i0, i1, ..., in such
that ikik+1 ∈ g for i = 0, n − 1 and i0 = in). Among trees, a particular
network structure is the star.

Definition 4 A graph g is a star if there is some i ∈ N such that g =
{ik|k ∈ N, k 6= i}.

The distinguished individual i figuring in the definition will be referred
to as the “hub”.

3 Efficient and stable networks

In this Section, we characterize the set of efficient and stable networks, and
provide some intuition for our results. The formal proofs are given in the
Appendix. Our first Theorem characterizes efficient networks.

Theorem 1 Suppose φ is a separable, convex function of individuals invest-
ments. Then, the unique efficient network is a star. Moreover, if φ is linear,
then the unique efficient network is the symmetric star where the hub invests
an equal amount in all links with peripheral agents.

The intuitive explanation for this result is the following. The star is a
minimally connected network, every peripheral agent concentrates his in-
vestment on a single link, and the distance between two nodes which are not
directly connected is minimized. All these features contribute to making the
star an obvious candidate for the efficient network. In fact, Bala and Goyal
(2000) also show that the star is the unique efficient network architecture
in the discrete link formation model. The novelty of Theorem 1 is that the
set of networks on which we optimize is much richer than in Bala and Goyal
(2000), as we allow agents to use weighted links. Hence, the main message

7The concept of ”strong pairwise stability” has been used by different authors under
different names. See Gilles and Sarangi (2004) and Bloch and Jackson (2006) for an
attempt to unify the terminology and a comparison of different stability concepts.
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of the Theorem is that stars remain the unique efficient networks even if we
consider a much larger set of weighted networks. Because the set of networks
on which we optimize is much larger, the proof of Theorem 1 is markedly
different, and much more involved than the proof of Theorem 5.5 in Bala and
Goyal (2000).

In the proof, we first show that, by reducing the number of links to
form a star, the aggregate benefits of the network increase. By convexity,
links become stronger, and the distance between nodes is reduced. However,
the star that is formed is not necessarily feasible – it could involve the hub
investing more than her endowment X. To solve this problem, we gradually
reallocate the investments on the links in a way which increases the value of
aggregate benefits. Finally, we show that the value of the network increases
when we merge two stars into a single one.

Our second Theorem shows that the star is also the unique Nash stable
network for strictly convex investments, and the only candidate for strongly
pairwise stable networks with linear investments.

Theorem 2 (i) If φ is strictly convex, the unique Nash stable network is a
star where the hub invests all her endowment in a single link.

(ii) If φ is linear, a strongly pairwise stable network must be a star with
(n − 1) peripheral nodes, and the set of strongly pairwise stable networks is

nonempty iff X ≥ (n−1)2

n(n2−3n+3)
.

Theorem 2 characterizes the set of Nash stable networks when φ is strictly
convex, and strongly pairwise stable networks for linear φ. In both cases,
stable networks are stars. With strictly increasing returns to scale, the hub
invests in a single link to a peripheral agent; for constant returns to scale, the
allocation of investment of the hub is indeterminate. The efficient symmetric

star is stable as long as the endowment X is greater than (n−1)2

n(n2−3n+3)
, an

expression which is decreasing in n for n ≥ 3, and converges to 0 as n goes
to infinity.

In contrast to Bala and Goyal (2000), we characterize the star as the
unique Nash stable architecture with a convex technology, and the unique
candidate for strongly pairwise equilibrium with a linear technology. The
strategy of the proof is related to Hojman and Szeidl (2007)’s proof even
though the models and the arguments are different. With a strictly convex
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link strength technology, we show that agents never have an incentive to
invest in multiple links. Given this ”one-link property”, we progressively
rule out all network architectures but the star.8

We first rule out cycles in equilibrium. Cycles arise when all agents
invest fully on the link to their neighbor. Agents must then access the same
indirect benefits through any node in the cycle, so that the cycle is fully
symmetric. An agent then has an incentive to redirect his investment towards
the neighbor who invests towards him, breaking the cycle towards a line but
increasing the strength of his direct link.

Once cycles are ruled out, we show that the only candidate equilibrium
among trees are stars. For any tree with diameter greater than or equal to
three, we prove that there must exist terminal nodes who have an incentive to
reallocate their investment in order to decrease the distance of their indirect
connections. Finally, we provide an argument to show that disconnected
stars cannot form in equilibrium.

When the link strength technology is linear, agents may invest in multiple
links, and the marginal benefits of any connection must be equalized. We use
this fact to construct joint pairwise deviations, and are able to show that,
in any strongly pairwise equilibrium, if an agent invests in multiple links, all
his neighbors must reciprocate by investing their entire endowment towards
him.9 This characterization enables us to use the same steps as in the case of
strictly convex link strength technologies to rule out all network architectures
but stars.

Taken together, theorems 1 and 2 also help us understand the gap be-
tween efficiency and stability in networks with endogenous link strength.
Efficient and stable networks are always stars, but the allocation of the hub’s
investment may differ. With increasing returns to investment, the hub in-
vests all his investment in one link in equilibrium, but efficiency may require
him to spread his investment across links, in order to increase the benefits
of peripheral agents. When φ is linear, the symmetric star emerges as a
strongly pairwise stable network when endowments are large enough. Since
this is the unique efficient network, this result identifies a condition under

8This is also the structure of Hojman and Szeidl (2007)’s proof, which first establishes
that agents invest in a single link (Lemma 2), then shows that the distance between
terminal nodes is at most two (Lemma 3) and finally rules out cycles and paths (Lemma
4).

9Notice that this argument exploits the fact that individual investment choices are
continuous, and has no equivalent in discrete models of link formation.
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which efficiency is compatible with stability when individual investments are
perfect substitutes. It is interesting to note that the threshold value of X
required to ensure this compatibility becomes smaller and smaller when the
number of individuals becomes large.

4 Extensions

In this section, we discuss two extensions of the analysis, one dealing with
an alternative model of investment, and the other with an alternative model
of reliability.

4.1 Weakest link reliability

We now suppose that agents evaluate paths according to the value of the
weakest link in the path rather than the product of link strengths. This
notion of “weakest link reliability” is useful for physical communication net-
works, like the internet, where the quality of a connection depends on the
bottleneck of the network. Formally, we define the alternative notion of
reliability as:

r̂(p(i, j)) = min
sim−1im∈p(i,j)

sim−1im

Agents choose to use the paths with the highest reliability, and we define the
benefit of a connection from i to j in this setting as:

R̂(i, j) = max
p(i,j)∈P (i,j)

min
sim−1im∈p(i,j)

sim−1im

With weakest link reliability, distance between nodes becomes irrelevant.
Networks with different architectures but with identical distributions of link
strengths result in the same value. Hence, efficient networks will typically
not be unique. The next Theorem shows that any efficient network with
weakest link reliability is equivalent to a star – the unique efficient network
in our baseline model.

Theorem 3 Let φ be a separable, convex function of individual investments,
and suppose indirect benefits correspond to the notion of weakest link relia-
bility. Then,
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(i) Any efficient network is equivalent to a star.
(ii) If φ is linear, then any efficient network is equivalent to a symmet-

ric star where the hub invests equal amounts on every link. Moreover, the
symmetric star is strongly pairwise stable.

(iii) If φ is strictly convex, a star where the hub invests in a single link is
strongly pairwise stable.

The characterization of stars as efficient networks with weakest link relia-
bility relies on arguments which are very similar to those showing that stars
are optimal in our baseline model. The main difference between the two ap-
proaches is that efficient network architectures with weakest link reliability
are not unique. In fact, when link strength technology is linear, any tree
with links of equal strength is efficient, and it can be shown that links of
equal strength can be obtained for any tree.10 As stars are strongly pairwise
stable, the set of strongly pairwise stable networks is nonempty.

A complete characterization of the set of stable networks is difficult. Since
the value of a path depends on the weakest link along the path, a joint real-
location of investments by two players leading to more equal link strengths
does not necessarily increase their payoffs. This lack of responsiveness of
payoffs to individual choices prevents deviations and results in a large num-
ber of strongly pairwise stable networks. The following example illustrates
why only a global reallocation of investments can improve individual payoffs.

Example 1 Let #N = 6. Consider a line where si,i+1 > 0 and sij = 0 if
j 6= i + 1. In particular, let s12 = s56 = 5/4X, and s23 = s34 = s45 = 7/6X.

All individuals can gain if 2, 3, 4 and 5 relocate their investments so as
to equalize link strength to 6/5X. However, this joint deviation requires
coordination among more than two agents and is not possible given our
equilibrium concept. No pair of agent has an incentive to deviate from their
strategies, so this inefficient network is strongly pairwise stable.

10To prove this last statement, one has to construct an algorithm, where terminal nodes
invest their full endowment on their predecessor, who invest X/(n− 1) on their successors
and (n− 2)X/(n− 1) on their predecessors, etc..

14



4.2 Investments as perfect complements

As a polar opposite to the case of perfect substitutes, we consider a model
where investments are perfect complements, so that an agent only benefits
from a relationship when the other agent also invests in the link. Formally,

sij = min{xj
i , x

i
j}.

When investments are perfect complements, agents should allocate “match-
ing” investments on every link in order to maximize direct benefits. This
intuition suggests that the efficient and stable network architectures will be
very different from those obtained in the previous section. Stars will perform
very badly, because the hub can only invest a small amount on every link. In
contrast, regular networks where all agents invest the same amount on every
link should perform fairly well.

Unfortunately, once indirect benefits are taken into account, the analysis
of efficient and stable networks becomes intractable. We have to content
ourselves with partial characterization results summarized in the following
Theorem.

Theorem 4 Suppose that individual investments are perfect complements.
Then,

(i) An efficient graph cannot contain any component with three or more
nodes which is a tree.

(ii) For 3 ≤ n ≤ 7, the symmetric circle where every link has value X/2
is the unique efficient network.

(iii) Moreover, the symmetric circle is strongly pairwise stable.

Theorem 4 establishes that trees cannot be efficient, and for small num-



comparing the case of perfect substitutes and perfect complements, we see
that in the latter case, efficient and stable networks will be denser and more
symmetric across players.

5 Conclusion

In this paper, we analyze the formation of communication networks when
players choose how much to invest in each relationship. We suppose that
players have a fixed endowment that they can allocate across links, and in
the baseline model, suppose that link strength is an additively separable
and convex function of individual investments, and that agents use the path
which maximizes the product of link strengths. Under these assumptions, we
characterize the optimal and stable networks. We also provide partial char-
acterization results for alternative specifications of the investment technology
and the benefit function.

In our view, this paper provides a first step in the study of networks where
agents endogenously choose the quality of the links they form. One obvious
drawback of our analysis is that agents are ex ante homogeneous. This
assumption leads us to conclude that links will all be of the same quality
(in the case of linear investments), or that, due to the hub’s investments,
some agents will be better connected than others (in the case of convex
investments). Neither of these distributions of link intensities does justice
to the broad array of social networks one observes in reality. In order to
study the formation of networks with varying link quality, and the effect
of individual characteristics on the efficient and stable distribution of link
qualities, we need to introduce heterogeneity across agents. Following Rogers
(2005), we could consider agents who differ both in their attractiveness (the
intrinsic utility they bring to other agents), and their endowment. This seems
to us to be a very promising avenue for future work.
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7 Appendix

Proof of Theorem 1: We prove the first statement in two steps. Consider any
feasible component h of g of size m where the total amount of investment is mX.12

Step 1: We construct a feasible star S with higher aggregate utility than h,
whenever h is not a star.

Step 2: If the graph g contains different components, we construct a single
connected star which has higher aggregate utility than the sum of the stars.

Proof of Step 1: Order the link strengths of the component h so that:

z1 ≥ z2 ≥ ... ≥ zK .

Construct a star S by picking an agent at random (say agent m), and connecting
him to the (m − 1) other agents with links of strengths z1, z2, ....,

∑K
k=m−1 zk in

the following way:

for all i = 1, . . . ,m− 2, xm
i = min{φ−1(zi), X}, xi

m = φ−1(zi)− xm
i

xm
m−1 = min{φ−1(

K∑
k=m−1

zk), X}, xi
m = φ−1(

K∑
k=m−1

zk)− xm
m−1

Let si, i = 1, . . . ,m − 1, denote the strengths of the (m − 1) links in the star.
Notice that by construction,

si = zi, i = 1, . . . ,m− 2, and sm−1 ≥ zm−1 (1)

In this star, direct benefits are exactly equal to those of the component h. We
show that indirect benefits have increased. In the star S, indirect benefits are
given by:

I = 2
m−1∑

i6=j,i,j=1

sisj

12If the total amount invested in the component is strictly smaller than mX,
then clearly the sum of utilities of agents in the component cannot be maximal.
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Let D = {ij|i and j are not neighbours in h}. So, D is the set of pairs of nodes
which are not directly connected in h, and so derive indirect benefits from each
other.13

Suppose first that h is a tree, but not a star. For each pair i, j in D, let zti

and ztj denote the strengths of the two terminal links in the unique path p∗(i, j).
Clearly, for all i, j ∈ D,

Rp(i, j) ≤ ztiztj (2)

Moreover, since h is not a star, the (geodesic) distance between at least one pair
of nodes, say i, j in h must be at least three. Hence, the inequality must be strict
for such i, j since the maximum strength of any link is strictly less than one and
the indirect benefit is the product of link strengths along the most reliable path.
Also, note that each pair of nodes in D is associated with a unique pair of terminal
links, and that one can construct exactly (m−1)(m−2)

2 pairs of terminal nodes out
of the set {z1, . . . , zm−1}. So, letting I ′ denote the sum of indirect benefits in h,
the following inequality must be true

I ′ < 2
m−1∑

i6=j,i,j=1

zizj = I

where the last equality follows from equation 1.
Suppose now that h is not a tree, so that the cardinality of D is now strictly less

than (m−1)(m−2)
2 . We can again associate a unique pair of terminal links (zti , ztj )

to any pair of nodes i, j ∈ D.14 Equation 2 will hold again, aggregate indirect
benefits in h is I ′, where

I ′ < 2
m−1∑

i6=j,i,j=1

zizj ≤ I (3)

The first inequality holds because there are now fewer than (m−1)(m−2)
2 pairs in D,

and the sum is being taken over the product of the pairs which can be formed out
of the strongest (m− 1) links.

If the star S is feasible, then this completes the proof. However, S may not be
feasible. By construction, each peripheral agent invests no more than X. However,

13Note that if i
 ∈ h, but the link strength is so weak that they do not derive
direct benefits from each other, then h cannot be efficient; both i and j should
switch their investment from ij to some other link.

14Since h is not a tree, there may be more than one most reliable path connecting
i and j. The tie-breaking rule used to select some most reliable path - and hence
the terminal links - is not important since the pair (zti , ztj ) can only be terminal
links for the pair (i, j).
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the construction may involve the center m investing more than X.15

We now show how to construct a feasible star
from S which will have at least as large direct and indirect benefits as S, and

hence strictly larger aggregate benefits than h.

Claim 1 Consider the star S constructed above. If, for all i = 1, . . . ,m − 1,
xm

i = X, then
∑m−1

i=1 xi
m ≤ X, and so the star S is feasible.

Proof of Claim 1: Suppose all peripheral agents invest X on the link with m.
Then,

m−1∑
i=1

xi
m =

m−2∑
i=1

φ−1(zi) + φ−1(
K∑

k=m−1

zk)− (m− 1)X

≤
K∑

i=1

φ−1(zi)− (m− 1)X

≤ X

We thus observe that, if star S is not feasible, there must exist a link k such
that xm

k < X. Of course, xk
m = 0.

Choose any i such that xi
m > 0. Consider the new star S̄ where the only change

from S is that x̄m
k = min{X, xm

k +xi
m}, and x̄i

m = xi
m− (x̄m

k −xm
k ). Let s̄k−sk = ε

and si− s̄i = δ. Then, ε ≥ δ from convexity of φ. That is, this transfer of resource
from link i to link k must (weakly) increase aggregate direct benefit.

We now check the effect of this change on indirect benefits. Let Ī and I be the
aggregate indirect benefit in S̄ and S respectively. Then,

Ī − I = 2

(ε− δ)
∑
j 6=i,k

sj + (sk + ε)(si − δ)− sksi


≥ 2(εsi − δsk − εδ)
≥ 2ε(si − sk − δ)
= 2ε(s̄i − sk)
≥ 0

15However, the feasibility of h and convexity of φ ensures that the total resource
used up in S does not exceed mX.
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The last inequality holds because s̄i = φ(X) + φ(x̄i
m) ≥ φ(X) ≥ sk.

So, aggregate benefit is at least as high in S̄ as it is in S. If S̄ is not feasible,
then we can continue to transfer resources from the hub to some peripheral node
in the same way, until some star with aggregate benefit at least as high as S is
feasible.

Proof of Step 2: Consider two feasible stars S1 and S2 of sizes s1 and s2.
Construct a new star S∗of size s1 + s2 centered around the hub of S,m2, with the
following investments:

xm2∗
i = X for all i 6= m2

xi∗
m2

= xi
m2

In terms of direct benefits, the only change between the new star S∗ and the stars
S1 and S2 is that the hub of S1 now invests fully on its link with m2. Given the
convexity of φ, this change must have weakly increased aggregate direct benefits.
Consider next the indirect benefits in the new star, I∗ and the sum of indirect
benefits in the two stars, I1 + I2. Indirect benefits inside the star S2 have not
changed, and peripheral nodes of S2 have gained access to new indirect connections.
Agents in the star S1 have gained access to new indirect connections to agents in
star S2. We focus attention on the difference in aggregate indirect benefits for
agents inside the star S1. New indirect connections linking the hub of S1,m1 to all
the players in S1 have been created. At the same time, the strength of an indirect
connection between two peripheral nodes i and j of S1 has been decreased from
(φ(X)+φ(xi

m1
))(φ(X)+φ(xj

m1)) to φ(X)2. The difference in indirect benefits can
thus be computed as:

∆I1 = 2(s1 − 1)φ(X)2 −
∑

i,j∈S1\m1

φ(X)(φ(xi
m1

) + φ(xj
m1

))−
∑

i,j∈S1\m1

φ(xi
m1

)φ(xj
m1

).

= 2(s1 − 1)φ(X)2 − 2(m− 2)φ(X)
∑

i∈S1\m1

φ(xi
m1

)−
∑

i,j∈S1\m1

φ(xi
m1

)φ(xj
m1

).

By convexity of φ, ∑
i∈S1\m1

φ(xm1
i ) ≤ φ(X)

and∈S1\ )φ(xi
m1

) ) .

By convexity of φ, ∑
∈S1\m1

φ (

/ 2( s1



so that
∆I1 > 0.

Hence, aggregate indirect benefits have increased after the merger of the two stars.
As the same argument can be repeated with any pair of stars, we have completed
step 2 and the proof of the first statement of the Theorem.

Next, suppose that φ is linear. Let S∗ be the star with hub at n, where all arcs
have strength X + X

n−1 . Let S be any other star with hub n where sin may not

be equal to sjn for i 6= j, but where
n−1∑
i=1

(xn
i + xi

n) = nX. Of course, total direct

benefits are maximized at both S∗ and S. We now show that the sum of indirect
benefits in S∗ is greater than that in S.

Without loss of generality let s1n and s2n denote the weakest and strongest links
in S. Consider the effect of increasing investment on s1n by ε and simultaneously
decreasing investment on s2n by ε.

The effect on the overall value can be computed as

∆V = 2[ε(s2n − s1n)− ε2]

Hence, for ε small enough, ∆V > 0 and so local changes in the direction of
equalization are profitable. But this implies that the symmetric star has higher
value than the asymmetric star. �

Several lemmas precede the proof of Theorem 2.

Lemma 1 Suppose φ is strictly convex, and g is a connected network which is
Nash stable. Then, all agents invest in a single link.

Proof. For any pair of connected agents (i, j), let W j
i denote the equilibrium

marginal value to i of the connection with j – namely the value of the direct
connection to j, and of all indirect connections to agents that i accesses through
j.

Suppose that agent i actually invests on two links to agents j and k. The
equilibrium values of the connections to j and k are given by

Wi = (φ(xj
i ) + φ(xi

j))W
j
i + (φ(xk

i ) + φ(xi
k))W

k
i .

Suppose without loss of generality that W j
i ≥ W k

i , and consider a deviation, where
agent i invests xj

i + xk
i on the link with agent j. This will result in a change in

utility
∆Wi ≥ W j

i φ(xj
i + xk

i )−W j
i φ(xj

i )−W k
i φ(xk

i ) > 0,
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concluding the proof of the Lemma.

Lemma 2 Suppose φ is linear, and g is strongly pairwise stable. If there is an
agent i who invests in multiple links, then all of i’s neighbors invest fully in the
link to i.

Proof. For any triple of agents (i, j, k) where ij, jk ∈ g, let W j,k
i denote the

equilibrium marginal value to i of the connection to k through j.
Suppose that agent i invests on two links to agents j and k. There are two

cases to consider.
Case 1: Both j and k invest on two or more links, so that xi

j < X and xi
k < X.

Assume that sij ≤ sik. We construct a joint reallocation of resources for players
i and j which makes both players strictly better off. Consider first a reallocation,
where agent i shifts ε resources from the link to k to the link to j . Because φ
is linear and player i invests in both links, the marginal values of the connections
to j and k must be equal, that is W j

i = W k
i . Hence, by reallocating investment

to the link with j , agent i’s utility cannot decrease. Consider now the utility to
agent j of the connection to i :

Wj = sij(1 + sikW
i,k
j +

∑
m6=j,k

simW i,m
j ).

Hence, the reallocation of investment will result in a utility change

∆Wj = ε(1 +
∑

m6=j,k

silW
i,m
j + W i,k

j (sik − sij))− ε2W i,k
j .

For ε close to zero, the change in utility is positive as sij ≤ sik.
Next, consider an agent l such that xl

j > 0 and consider a reallocation where
agent j shifts δ resources from the link to l to the link to i. Because xi

j may be
equal to zero, this reallocation may result in a utility loss for agent j. However,
this utility loss must be continuous in δ and hence, for any ε, one can find δ(ε),
such that the total effect of the reallocation of resources (δ, ε) on the utility of j is
strictly positive. Now consider agent i. Since agent i could have chosen to connect
directly to agent l, the equilibrium marginal value of i’s connection to j must be
at least as large as the marginal value of a possible direct connection to l. So,

W j
i = 1 + sjlW

j,l
i +

∑
m6=i,l

sjmW j,m
i ≥ W j,l

i . (4)

23



Now the effect of the reallocation of resources δ on the utility of agent i is given
by:

∆Wi = δ(1 +
∑

m6=i,l

sjmW j,m
i + W j,l

i (sjl − sij))− δ2W j,l
i .

Using equation 4,
∆Wi ≥ δ(1− sij)W

j,l
i − δ2W j,l

i ,

which is strictly positive for δ close to zero. Hence, we have constructed a joint
reallocation of resources which makes both players i and j strictly better off.

Case 2: Suppose xi
j = X, but xi

k < X.
From the proof above, it is clear that if sij ≥ sik, then individuals i and k can

jointly plan a profitable deviation. So, assume that sij < sik. Since xi
j = X, this

means that X > xi
k > 0. Let xl

k > 0 for some l. Since i invests on k, W k
i ≥ W l

i .
Similarly, since k invests on i, W i

k ≥ W j
k . Suppose k transfers some resource from

the link to l to the link to i. Then, i’s total utility strictly increases since he gets
the additional direct benefit, and there cannot be any loss in indirect benefit since
W k

i ≥ W l
i . Moreover, k is indifferent since W i

k = W i
k. For an exactly analogous

reason, a transfer of resource by i from the link to j to the link to k makes k better
off and leaves i indifferent. So, i and k have a profitable joint deviation.

Lemma 3 Let g be a connected network which is not a tree. Then,
(i) If φ is strictly convex, then g is not Nash stable.
(ii) If φ is linear, then g is not strongly pairwise stable.

Proof. Let g contain a cycle {(12), (23), . . . , (r − 1, r), (r1)}. Denote R =
{1, 2, . . . , r}.

(i) Since φ is strictly convex, Lemma 1 implies that all agents invest only on
one link. Let Li and Li+1 be the sets of nodes contained in N \ R which can be
accessed through nodes i, (i+1) ∈ R. Note that these must be disjoint sets - since
agents invest in only one link, since there can be at most one cycle.

Let Vi be the total benefit that i gets from nodes in Li. Similarly, let Vi+1 be
the total benefit that i + 1 gets from Li+1. We first show that Vi = Vi+1.

Suppose not. Let Vi > Vi+1. Then, i−1 is better off connecting to i+1 rather
than to i. Hence, Vi = Vi+1 ≡ V .

So, i gets a benefit of φ(X)k from node i + k in R and φ(X)kV from nodes in
Li+k. Let B = 1 + V . Then, if r is odd, agent i initially obtains

Ui = 2B

(r−1)/2∑
k=1

φ(X)k
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If r is even, then i obtains

Vi = 2B

(r−2)/2∑
k=1

φ(X)k + φ(X)r/2B

Now suppose that agent i in the cycle unilaterally deviates and chooses to
invest X on the link with i− 1. Then, after the deviation, she receives

U ′
i = 2B

(r−1)∑
k=1

φ(X)k

Hence, irrespective of whether r is odd or even, this deviation makes agent i strictly
better off.

(ii) We first prove that if φ is linear and g is strongly pairwise stable, then all
agents in the cycle invest on only one link.

Suppose in contradiction that an agent i in the cycle invests on multiple links.
From Lemma 2, both agents i − 1 and i + 1 must invest fully on the link with i.
Let k be the smallest integer such that i−k invests both on i−k +1 and i−k−1.
Such k must exist to complete the cycle. Then, lemma 2 requires that i − k + 1
invests fully on the link with i− k. But, by assumption i− k + 1 invests fully on
the link with i− k + 2.

Now, take any agent j in Li who is connected to i, and k ∈ Li+1 who is
connected to i + 1. Lemma 2 implies that j invests fully on the link with i andk

invests fully on the link with i + 1. Repeated application of lemma 2 implies that
all agents in Li and Li+1 in fact invest only on one link.

The rest of the proof is identical to that of (i) above.16

Proof of Theorem 2: From lemma 3, we know that only trees can be Nash
stable if φ is strictly convex or strongly pairwise stable if φ is linear.

Now, consider a tree of diameter greater than or equal to 3. Let i and j be two
terminal nodes at a distance greater than or equal to 3, and let k and l be their
predecessors in the tree (where k 6= l as the distance between i and j is greater
than or equal to 3 ). Agent i could have chosen to invest his endowment on player
l instead of k, so that

W k
i ≥ W l

i = W l
j + R(l, j)−R(l, i),

16Notice that in the proof of (i) we have used strict convexity of φ only to
conclude that all agents invest only on one link.
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where the last equality results from the fact that by investing on l , agent i would
have received the same marginal value as j , but would have in addition gained a
connection of length 2 to j and lost the indirect connection between j and i . By
a similar computation,

W l
j ≥ W k

i + R(k, i)−R(k, j).

Summing up these inequalities, we obtain: R(l, i) + R(k, j) ≥ R(k, i) + R(l, j),
a contradiction since R(l, i) = R(k, i)R(k, l) and R(k, j) = R(l, j)R(k, l) with
R(k, l) < 1.

This shows that if g is not a collection of stars, then it cannot be Nash stable
if φ is strictly convex or strongly pairwise stable if φ is linear.

Suppose that the network contains two stars, S1 and S2, with |S1| = s1 ≥ s2 =
|S2|. If φ is strictly convex, then from lemma 1, the hub of the star must invest fully
on one link. Consider then a unilateral deviation from a peripheral agent i of S2 in
which the hub does not invest. By connecting to the hub of S1 , agent i obtains a
payoff V ′

i = φ(X)+(s1−2)φ(X)2+2φ(X)2 = φ(X)+s1φ(X)2 whereas she initially
received a payoff of Vi = φ(X) + (s2 − 3)φ(X)2 + 2φ(X)2 = φ(X) + (s2 − 1)φ(X)2.
Since Vi < V ′

i , this shows that a network containing two or more stars cannot be
Nash stable. It is easy to check that a star in which the hub invests fully on one
link is Nash stable. This concludes the proof of part (i) of the theorem.

If φ is linear, consider the peripheral agent i who receives the lowest benefit.
Without loss of generality, suppose that she belongs to star S2 and let i∗2 denote the
hub of star S2 . and i∗1 the hub of star S1. Consider the following joint deviation
by agents i and i∗1 : agent i connects fully to i∗1, x

i∗1
i = X ; agent i∗1 shifts away

investment xj
i∗1

from some peripheral agent j in start S1 and invests this amount
in the link to i. After this deviation, agent i∗1 ’s payoff has increased from s1X to
(s1 + 1)X and agent i ’s payoff has increased from Vi to Vj + Xsii∗1

> Vi. This
shows that if φ is linear, then a strongly pairwise network must be a connected
star.

Suppose now that

X <
(n− 1)2

n(n2 − 3n + 3)
(5)

We want to show that no star can be strongly pairwise stable. Let g be any
connected star with the hub being individual 1, and suppose that i and j are the
two peripheral agents with lowest utility. This implies that xi

1x1
j ≤ ( X

n−1)2 since
the hub’s investment on i and j cannot exceed 2X/(n− 1).

Consider a joint deviation in which players i and j invest fully on the link ij.
Then, the gain in direct benefit for each of these two players is X. Each of these
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players loses an indirect benefit of X(X + xk
1) from each player k 6= 1, i, j and the

indirect benefit of (X +xi
1)(X +xj

1). So, the total loss in indirect benefit to player
l, l = i, j is

L = X
∑

k 6=1,i,j

(X + xk
1) + (X + xi

1)(X + xj
1)

= (n− 1)2X2 + xi
1x

j
1

≤ (n− 1)2X2 +
X2

(n− 1)2

< X

where the last inequality follows from equation 5. This shows that if the inequality
in equation 5 holds, then the set of strongly pairwise networks is empty.

Conversely, consider the connected star in which the hub invests equally on
each link, and suppose that X ≥ (n−1)2

n(n2−3n+3)
. As the hub of the star gets the

maximal payoff, nX, she never has any incentive to deviate. No peripheral agent
has any unilateral profitable deviation. Now, consider a joint deviation by a pair
of peripheral agents i, j. The only possible such deviation is for player i to shift
some resource from her investment on the link with the hub to a link with player j,
and for player j to reciprocate. Given the linearity of φ, if this deviation is jointly
profitable for transfers (δi, δj), then it is profitable when i and j invest fully on
their own link. Then, the gain in direct benefit is X. The loss in indirect benefit
is exactly (n − 1)2X2 + X2

(n−1)2
≤ X. Hence, the connected star in which the hub

invests an equal amount on each link is strongly pairwise stable. This completes
the proof of the theorem. �

Proof of Theorem 3:
(i) The proof follows the same lines as the proof of Theorem 1.

Step 1: Observe first that we can restrict attention to trees. If a network
contains a cycle, then consider the weakest link on the cycle, and reallocate the
investments over the other links. Since the weakest link in the cycle was never used
on any path (or agents were indifferent between using it or an alternative path), this
reallocation must weakly increase the aggregate benefits in the network. Consider
now any tree h on m nodes, with link strengths {z1, . . . , zm−1}, and the star S
corresponding to h as in the proof of Theorem 1. Denote the link strengths in S
as {s1, . . . , sm−1}. Direct benefits are exactly identical in S and in h. The sum of
indirect benefits in the star S is easily calculated.

I = 2
m−2∑
i=1

(m− i− 1)sm−i
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To check this, note that the link sm−1 is the minimum in all comparisons, and so the
sum of indirect benefits obtained between m− 1 and other nodes is 2(m− 2)sm−1.
Similarly, sm−2 is the minimum in (m− 3) comparisons and so on.

Now, consider indirect benefits in h. Note that the arc zm−1 must also be
involved in at least (m − 2) comparisons in the graph h (the minimum being
attained if zm−1 connects some terminal node). Similarly, for any t, the t arcs
with the lowest values, {zm−t, ..., zm−1} must be the minimum in at least (m −
2) + (m− 3) + ... + (m− t− 1) connections (the minimum being attained if they
both connect to some terminal node). This establishes that the sum of direct and
indirect benefits is at least as high in S as in h.

Step 2: We now show that if the graph contains two stars S1 and S2, it is
dominated by the graph where the two stars are merged into a single star, as in
the proof of Theorem 1. By merging the two stars into a single star with hub m2,
direct benefits have increased. Furthermore, indirect benefits for players in star S2

have strictly increased. For a peripheral agent i in star S1, indirect benefits were
equal to

Ii =
∑

j∈S1\m1

φ(X) + min{φ(xi
m1

), φ(xj
m1

)}

= (m1 − 1)φ(X) +
∑

j∈S1\m1

min{φ(xi
m1

), φ(xj
m1

)}.

In the new star, indirect benefits are given by:

I∗i = (m1 + m2 − 1)φ(X).

As m2 ≥ 1 and φ(X) ≥
∑

j∈S1\m1
min{φ(xi

m1
), φ(xj

m1)}I∗i ≥ Ii and indirect bene-
fits cannot have decreased.

This concludes the proof of part (i).

(ii) Next suppose that φ is linear, and that the hub invests different amounts
on its links with peripheral nodes. Let i be a node for which xi

n is maximal, and j a
node for which xj

n is minimal. Consider a reallocation of investments, x̃i
n = xi

n−ε,

x̃j
n = xj

n + ε. This reallocation does not affect direct benefits. For ε small enough,
it only reduces indirect benefits between i and other players who are connected to
the hub by links of maximal strength by ε. Indirect benefits between player j and
all these players have been increased by ε, and indirect benefits between players i

and j have strictly increased. Hence, this reallocation of investments has strictly
increased the value of the graph, showing that the hub must put equal weight on
all links with peripheral agents.
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Now, in the symmetric star, each link has strength (X + X
n−1). Since there are

n − 1 links, each agent gets a benefit of nX. Since this equals the total resource
available, the symmetric star must be strongly pairwise stable.

(iii) To show that, if φ is strictly convex, the star where the hub invests on a
single link is strongly pairwise stable, notice that the hub and the peripheral agent
in which he invests obtain the maximal benefit of nφ(X) and have no incentive to
move.

Other peripheral agents have a benefit of (n−1)φ(X). If two peripheral agents
move, they have no incentive to reallocate their links in such a way that they form
a cycle. Hence, either they reallocate all their investments on their link and they
obtain 2φ(X) which is smaller than their initial payoff. Or one of them reallocates
his investment from the hub to the peripheral agent, resulting in the same payoff
of (n− 1)φ(X) as before. Hence, there does not exist any profitable deviation. �

Proof of Theorem 4: (i) Suppose g is efficient and has a component with three or
more nodes, where two nodes have degree one. Denote these nodes by i and j and
their immediate predecessors by k and l respectively. Because the component is
connected, the degrees of k and l are necessarily greater than one. But this implies
that xi

k < X and xj
l < X . Furthermore because

∑
m∈N\{i}

xm
k ≤ X, xm

k ≤ X − xi
k

for all node m 6= i to which k is connected. Now, this implies that the value
of the indirect connection between i and j in the graph is strictly smaller than
min{X − xi

k, X − xj
l }. Furthermore, in an efficient graph, xk

i = xi
k and xl

j = xj
l

so that individual i can invest X − xi
k in the direct link with j and individual j

can invest X − xj
l in the link with i . But, because the value of the indirect link

is smaller than min{X − xi
k, X − xj

l } , the investment in the direct link strictly
increases the value of the graph, yielding a contradiction. This completes the proof
of part (i).

(ii) To show that the symmetric circle is efficient for low values of n, consider
the different values of n in turn. For n = 3 , the circle is the only connected graph
which is not a tree. Now, notice that direct benefits are equal to nX and hence
are maximal in the circle. For n = 4, 5 , we show that the circle also maximizes
the value of indirect benefits. Notice first that the value of an indirect connection
is always bounded above by (X/2)2 as the middle player must allocate X over at
least two links. For n = 4 and n = 5 all indirect connections in the circle are
of length 2 and have value (X/2)2 . Hence, the circle achieves the highest sum
of indirect links and is efficient. It is easy to check that any other allocation of
investments results in a lower value of indirect links, so the circle with links of
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equal strength is uniquely efficient.
Suppose now that n = 6, 7. The indirect benefit for any node in the circle is

I =
X2

2
+

X3

4

Consider any other graph g. If this graph is to “dominate” the cycle, then at
least one node (say i∗ ) has to derive an indirect benefit exceeding I . For each k

, check that the circle maximizes indirect benefits from nodes at a distance of k.
So, if i is to derive a larger indirect benefit in g, it must have more than two nodes
at a distance of 2.17

It is tedious to show that the maximum indirect benefit that i∗ can derive
occurs when i∗ has two neighbors, j1, j2 , with each neighbor of i∗ having three
neighbors including i∗ itself. Moreover, the optimum pattern of allocation from
the point of view of i∗ is

xj1
i = xj2

i = xi
j2 = xi

j2 =
1
2

This yields i∗ a total indirect benefit of X2

2 < I .This completes the proof of part
(ii).

(iii) Finally, we show that the symmetric circle is strongly pairwise stable. In
the symmetric cycle, each i gets a direct benefit of X. No pattern of investment
can result in higher direct benefits. So, we check whether a deviation by i and j

can improve their indirect benefits.
Suppose i and j are neighbors in the cycle. Consider the effect on i of increasing

investment to X
2 +y by both i and j on the link ij, and decreasing their investments

on their other neighbors by y. The change in indirect benefit for i from j’s other
neighbor is (X

2 + y)(X
2 − y) − (X

2 )2 < 0. A similar calculation shows that i also
loses from nodes which are further away.

Suppose i and j are not neighbors in the cycle. Let i and j mutually invest
y each on the link ij and simultaneously decrease investment on their previous
neighbors by y

2 . It is easy to check that this is the best possible deviation.
Clearly, this can only increase indirect benefit for i if there is some k such that

the distance between i and k is now lower. This means that i accesses k through
j. Let k be a neighbor of j. Then, the indirect benefit for i from k is

I = y(
X − y

2
) =

Xy

2
− y2

2
17Since n ≤ 7, the maximum distance between any two nodes in the circle is 3.
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Now, i has reduced the strength of links with each of its previous neighbors by
y
2 . Also, since k is not at a distance of 2 from i in the cycle, there must be some
node m, distinct from k which is at a distance of 2 from i. The loss in indirect
benefit for i from m is

I ′ = (
X − y

2
)
X

2
− X2

4
=

Xy

2

Hence, the indirect benefit for i from k is lower than the loss in indirect benefit
from m.

Repeating this argument, it can be shown that i’s total indirect benefit will
actually go down as a result of the deviation. �
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