ORIGINAL PAPER

Lisa A. Cameron · Deborah Cobb-Clark

Do coresidency and financial transfers from the children reduce the need for elderly parents to works in developing countries?

```
10~M_{\odot} 2005 / A _{\odot} : 11 J/ _{T} 2006 / _{\odot} : 3 N _{\odot} 1 , _{T} 2006 / _{\odot} 2006
```

Abstract D property of the first property of

Keywords I $_{\Gamma}$ $_{\Gamma$

1 Introduction

Life with the proof of the state of the sta

```
Responsible editor: J
```

```
L. A. O \vdash_{\Gamma}.

D. A_{\Gamma} \vdash_{\Gamma} \vdash
```

D. C. . . -G/_T/ (Institute for Labor Studies (IZA), Bonn, Germany
Tel.: +61-2-612532 67, Fax: +61-2-61250182, E-mail: Deborah.Cobb-Clark@anu.edu.au

Also, A_{Γ} A_{Γ} the late of the first of the the late of the second ong - ing a langual mand i kapitan da padi in tagpet

Last de la completa del completa de la completa de la completa del completa de la completa del la completa del la completa de la completa del la completa de la completa de la completa del la completa del completa del la complet destroped on a place of the product description of a product description The same the series with the first series series April of the market of the the market of Marin too hand ? E.A. Ar rate I down to the A Mar to be a real of the design of the first of the second of the secon IFL a tent a discrete to the day of the way of the por positivity - correction in the contraction of the service of t

I was the state of I as the processing the following states of the first End of the training of the training of the training Martin Arandan ride and many A. Mar take, of we distribute the factor of the contract of the contract of

A transfer to the Art of the transfer to the control of the contro some stage . Chipse some in the property of th Tropic for the second of the s dution of the Tar of the state of the of the third of of the deliveration the million of The there is a second of the term of the term of the terms of the term and it is the last property of the second of the second who have the same of the first the same with an every son of that it of the the

THE BOLD AS A CONTRACT OF SAME PROPERTY AS A SAME OF S The state of the s

And the state of the first the state of the

2 Existing literature and the Indonesian context

 M_{Γ} M_{Γ}

 $(B \mid_{\Gamma} 1974, 1991), A \mid_{\Gamma} 1985) A \mid_{\Gamma} 174 \mid_{\Gamma} 17$

Ard Are Marine (1997)

to the state of the free section by a fing end on a fitter And I was placed as I all the it .

In the second se \mathbf{r} and \mathbf{r} and \mathbf{r} and $\mathbf{E}_{\mathbf{r}}$ and \mathbf{r} and \mathbf{r} and \mathbf{r} I as the contract of the property of the contract of the contr The second of th which is a first of the second of the second

3 The Indonesian family life survey

 \mathbf{r} . I. \mathbf{r} . \mathbf{r} . The 2,625 control of the first the f 1,891 \rightarrow Γ \rightarrow Γ I Mas will a so was for the the form do a district the

r the stade of the state of the Ara Mr. Proper and a

1.507 were it is a factor of the day of the second Drug , The day to the termination of the second day

 $\frac{1}{2} \left(\frac{1}{2} + \frac{1$ $A_1, \dots, A_{r-1}, \dots, A_{r-1},$ $\frac{\partial \mathbf{r}}{\partial \mathbf{r}} = \frac{\partial \mathbf{r}}{\partial \mathbf{r}} = \frac{\partial$

IFL A_1 , A_2 , A_3 , A_4 , A_4 , A_5 , A_5 , A_7 $A_{\mathbf{r}}$ \mathcal{L}_{Γ} 20 \mathcal{L}_{Γ} \mathcal{L}_{Γ} . In \mathcal{L}_{Γ} \mathcal{L}_{Γ} , if \mathcal{L}_{Γ} , \mathcal{L}_{Γ} , \mathcal{L}_{Γ} The last with the first water in the first water in the second of the se man set A is a set of the set of I have the state of the state o

An Ada Anton his a to the control of the control of the Also and the distriction of the plant of the plant of the same where so it was the last of the solution of th The second of th رُ مِنْ اللَّهِ مِن at appropriate of the open of a state of the The world of the form direction of the contract of the distance of the distanc As a factor of A_{r} , A_{r} war and the state of the state I_{Γ} ..., $I_{$

¹⁶I ... 1993.

Table 1 L	1 ₁₁ 1	, e ∮ = e	Ι	4 ,) · (I)
-----------	-------------------	------------------	---	------------	---------

L , I _{II} I (N=2,625)	F ₁ , (%)
Line was deline was	62.51
Line in the second (contract)	7.60
Liberton (Contract of the con	9.02
$\mathbf{L}_{(i)}$. From i	13.67
$\mathbf{L}_{\mathbf{L}_{\mathbf{L}_{\mathbf{L}_{\mathbf{L}}}}} = \mathbf{J}_{\mathbf{L}_{\mathbf{L}_{\mathbf{L}_{\mathbf{L}}}}}$	7.03

A $r_r \sim r^d$, $d \sim r_r \sim r^{-r}$, $r \sim r^{$

A, 2 m 1 m 1 lar A, a reflection of the object of the obje

			$\mathbf{M}_{\mathbf{p}}$		
	Crw		Crv		
	N		Ŋ		
M4. 4	217.2	160.0	186.2	185.4	
restate to the total (%)	70.2	52.9	66.6	48.9	
M I = M I	35.6	6.8	28.2	9.9	
$MA = \sqrt{MA} =$	115.5	34.9	33.8	16.9	
[···[·································	55.6	39.0	83.4	72.0	
$M_{I_{r-1}}$	17.6	13.4	34.0	30.3	
MA_{1} , I	31.6	34.4	40.1	42.1	

or segen was deeper I do do do indeed to be the segender.

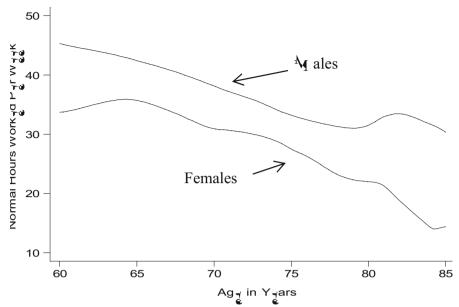


Fig. 1 $U_{\cdot,\cdot}$ \uparrow_{Γ} $\uparrow_{\cdot,\cdot}$, A A \downarrow_{\cdot} \downarrow_{Γ}

13.4. ir/

4 The empirical framework

The state of the s

Edus 1-6, provide allower allowers allo

, by wether April in a short Mail in a short En & to Apropriate place of the contraction of the Angel

$$LS_i^p = \max(\beta_{0n} + \beta_{1n} \mathbf{Z}_i^p + \gamma_{1n} TR_i + \varepsilon_{1i}, 0) \quad \text{if } C_i = 0$$
 (1)

$$LS_{i}^{p} = \max \left(\beta_{0n} + \beta_{1r} Z_{i}^{p} + \beta_{2r} Z_{i}^{CC} + \gamma_{1r} TR_{i} + \varepsilon_{2i}, 0 \right) \quad if \ C_{i} = 1, \tag{2}$$

 \dots $_{r}$ E . 14. \dots 24 $_{r}$ \dots 4. \dots 5. \dots 4. \dots 5. \dots 6. \dots 7. \dots G. A. G. T. C. T. C. T. T. T. T. T. C. T.

of the form of the state of the

$$TR_i = \max(\pi_{on} + \pi_{in}Z_i^{NC} + \pi_{2n}Z_i^P + u_{1i}, 0)$$
 if $C_i = 0$ (3)

$$TR_i = \max\left(\pi_{or} + \pi_{ir}Z_i^{NC} + \pi_{2r}Z_i^P + \pi_{3r}Z_i^{CC} + u_{2i}, 0\right) \quad \text{if } C_i = 1, \tag{4}$$

and a first of the second of the first of the first of the second of the

$$C_i^* = \eta_0 + \eta_1 Z_i^P + \eta_2 Z_i^C + \eta_3 H_i + \nu_i$$
 (5)

$$Ci = 1 \text{ if } C_i^* > 0$$

= 0 if $C_i^* \le 0$

4.3 L

The first property of the second of the seco

4.4 E , A . .

$$\begin{pmatrix} \nu_i \\ u_i \\ \varepsilon_i \end{pmatrix} \sim N \begin{pmatrix} 0 & 1 & \sigma_{vu} & \sigma_{v\varepsilon} \\ 0 & \sigma_u^2 & \sigma_{u\varepsilon} \\ 0 & \sigma_\varepsilon^2 \end{pmatrix},$$

5 The effect of coresidency and transfers on labour supply

. The context of the property of the property

²¹ Transport of the property o

5.1 . M. Ir I. M. V. I.

Table 3 D , r | A ,

	C _r		N , -, r	11	C _r		N r	17
	<u> </u>		- I		M (N=	407)	M . (N=	302)
	(N=418))	(N=302))				
I_{Γ} I_{Γ} I_{Γ}								
r 4 ₱- r (000)	-0.001	-0.19	-0.017	-1.94	-0.007	-0.80	-0.042	-0.54
c I had	1.592	1.47	0.733	0.26	0.024	0.02	9.365	0.49
(000,000)								
A (000,000)	-0.002	-0.08	-0.005	-0.06	0.043	1.13	-4.722	-0.62
Ar Ar Ard are								
A	-0.653	-3.35	-0.447	-1.69	-1.413	-5.47	-1.468	-6.73
Et I a.								
$\mathbf{r}^{\mu} \mid \mathbf{A}_{\mathbf{r}}$	0.520	0.26	2.309	0.79	-4.046	-1.22	-5.065	-1.81
\mathcal{A}_{Γ}	4.481	0.96	-17.962	-2.32	-8.175	-1.38	-11.950	-2.14
M _{II} ,	3.083	1.86	-1.306	-0.48	5.683	1.06	7.656	1.65
$\mathbf{D}_{\mathbf{A}}$	-6.748	-2.32	-13.560	-2.62	-20.819	-3.48	-6.074	-1.08
Tr.	-0.216	-0.12	5.866	1.93	5.307	1.70	0.889	0.29

6 The interdependencies between various forms of old-age support

6.1 C_T ... 1 ... I ... 1 ... r

The state of the s

 $[\]frac{27}{10}$ in $\frac{1}{10}$ is a $\frac{1}{10}$ from $\frac{1}{10}$ in $\frac{1}{10}$

, $|\mathcal{A}_{\mathbf{II}}|$, $|\mathcal{A}_{\mathbf{I}}|$, $|\mathcal{A}_{$ english at a solg on I a south the life of the

And Art (r) a Few by restriction of the restriction The last of the state of the st were and a second of the secon man all har all a second a second as a \mathcal{A}_{Γ} , \mathcal{A}_{Γ} The transfer of the Articles of the second of the second super day of the parties of a state of the first the total

white the his the store of with a relies the sky

Maria Property of the salar construction.

I wrate the recommendation of the little of the contraction of The board of the hours of the board of the second of the s The day is a decrease to be at the off the law of In The state of the state of the flower of the state of the

grant to distribute a large to the state of Fig. 1. Ad $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{8}$ $_{7}$ $_{7}$ $_{8}$ $_{7}$ $_{8}$ $_{7}$ $_{8$

¹¹ r 1ron our has been

	N=7	720)	M = (N=709)	9)
	M _r , A,	, t 1 a a	M _r , A, #	, t 1 a a
1 _r , , ', , ,				
(000,000)	-0.096	-3.71	-0.022	-1.16
A (000,000)	-0.001	-1.91	0.001	1.39
Ar Ard . ris a				
A	-0.011	-3.41	-0.001	-0.16
M _{II} ,	-0.067	-1.57	-0.005	-0.08
D. A.	0.083	1.24	-0.046	-0.50
Tilde of day.	-0.029	-0.58	-0.018	-0.42
Ar / rate of the	-0.074	-0.72	0.008	0.09
Tr.	-0.083	-1.73	-0.028	-0.54
r in the last				
#	-0.068	-1.57	-0.140	-2.17
$G \vdash_{\mathbf{I}}$	0.037	0.21	-0.109	-1.04
T ³ 4 ,	-0.100	-1.40	-0.084	-1.14
Corr / Art or o				
M _{III}	-0.002	-0.17	0.016	1.53
N . I Im	0.150	6.45	0.177	8.69
AT IT Am.	0.037	2.61	0.003	0.20
rodr of doc	-0.023	-0.93	-0.054	-2.16
$\mathbf{L}[A_{\mathbf{r}}] = \{A_{\mathbf{r}}\}$				
A rd (000,000	0.036	1.73	0.080	3.80

6.2 respectively.

1988), it does not be a second of the second

 $F_{i}A_{ij}$, F_{i} , F_{i

Table 5 $_{\mathbf{r}}$ / $_{\mathbf{r}}$ (.000) $_{\mathbf{r}}$ | ... $_{\mathbf{r}}$... $_{\mathbf{r}}$... $_{\mathbf{r}}$ / $_{\mathbf{r}}$ | ... $_{\mathbf{r}}$... $_{\mathbf{r}}$

	$C_{\mathbf{r}}$		N r		C^{ι} .		N , -, r	12	
					M (N:	M = (N=407)		M (N=302)	
	(N=418)	3)	(N=30)	2)	`		`	ĺ	
I_{Γ} , I_{Γ} , I_{Γ}									
(000,000)		1.95	105.4	2.49	51.8	2.56	37.6	0.91	
A (000,000)	1.9	3.51	2.6	1.82	-0.1	-0.12	2.4	1.32	
$A_{\mathbf{T}}$, $A_{\mathbf{b}}$, $A_{\mathbf{T}}A$, $\mathbf{T}^{\mathbf{b}}$, a									
A	0.8	0.23	3.1	0.69	-10.4	-1.94	-3.1	-0.66	
Er da.									
$r \mid A_{\Gamma}$	88.0	2.04	8.7	0.12	130.6	2.36	-146.8	-2.52	
$\mathcal{A}_{\mathbf{r}} / \mathcal{A}_{\mathbf{r}}$	313.3	2.92	-376.4	-2.41	6.4	0.05	-222.0	-1.77	
M _{rr} ,	-108.7	-2.74	-175.7	-2.72	-2.0	-0.02	15.4	0.15	
D. 4.	-1.5	-0.03	-19.1	-0.18	-74.9	-0.56	7.2	0.06	
T4,	83.5	2.14	-46.0	-0.74	125.0	2.10	119.5	1.62	
Take of the late	-2.4	-0.14	22.1	0.89	28.8	1.09	13.1	0.56	
I I'r I'r I'r I'r I'r I'r I'r I'r I'r I'									
#	7.9	0.19	-71.1	-1.17	135.2	1.54	-8.2	-0.08	
$G \vdash_{\mathbf{r}} \vdash$	-310.5	-1.69	559.9	2.35	-86.5	-0.53	-43.6	-0.28	
	-41.4	-0.58	-204.2	-1.94	50.3	0.53	1.2	0.01	
Cr who was a state	L) -)								
M _{III} ,	21.6	0.49			55.1	0.84			
N . I I	-5.9	-0.19			-213.8	-4.97			
AT IT A.	-13.6	-0.43			-27.2	-0.57			
rula - t l a.	79.9	1.80			179.3	1.86			
N T W. Mer.	/ _r / , _r , ,	1							
M _{rr} ,		6.45	63.2	4.09	49.5	2.85	33.9	2.18	
$N = I_{II}$	52.0	1.71	164.3	3.84	-23.5	-0.65	-53.7	-0.97	
$\mathcal{A}_{\mathbf{r}} \longrightarrow \mathcal{A}_{\mathbf{r}}$	2.6	0.19	2.2	0.10	29.8	1.13	70.7	3.09	
rodr of doc.	42.1	1.43	62.2	1.69	98.6	1.81	52.6	1.29	
$\mathbf{C} = \mathbf{A} \mathbf{A}$	-59.4	-0.24	291.0	0.87	1,079.2	2.54	166.5	0.44	

7 Conclusions

iff in the state of a finite state of a fill the state of a fill t

topo do a processo de de la maria de la propiesa del la propiesa de la propiesa del la propiesa de la propiesa

Ladas Por contract of the cont

This is a second of the part of the provide a second of the provide and the pr

Acknowledgements $A \cap A_{r} \cap$

Appendix 1

Table 6 1,1 1

	Br. i de .
D	
C _r · · · ·	E (A) . If A _I
$M_{r,r}$ $T_{r,h}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 I 1 2 1	the sound of and did some state
Α .	(or of the result) A construction of the result (or one or description of the result of the resu
A	$A_{i,k}(A_k, A_{i,k}) = \sum_{i \in A_i} A_{i,k} + \sum_{i \in A_i} A_{i,k$
M _{II} , ,	$D: \left\{ \begin{array}{ccc} I_{\mathbf{r}} \mathcal{A}_{\mathbf{r}} & & & \\ & I_{\mathbf{r}} \mathcal{A}_{\mathbf{r}} & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$
D. A.	Edde & Received & Marine Asset in the first in the second of the second
Ext 1 de .	$\mathbf{D} \vdash \vdash \mathcal{A}_{\mathbf{p}} \mathcal{A}_{\mathcal{A}} \mathbf{p} \not = \mathbf{A}_{\mathcal{A}} \mathbf{p} \not= \mathbf{A}_{\mathcal{A}}$
1 r	$E_{\mathbf{r}} = A(x_1, x_2, \dots, x_n) A_{\mathbf{r}} = \mathbb{R}^n \times \mathbb{R}$
T/,	$E A_1 = A_1 A_2 A_3 A_4 A_4 A_5 A_6 A_6 A_6 A_6 A_6 A_6 A_6 A_6 A_6 A_6$

Table 6 (, , , , ; ,)

	B≱a, sab :
r in the series	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
t, was parts	e en et la gille en la grece en la mental de grece greche. De la competition de la grece
A rd t r	$A_{\mathbf{r}}$ $A_{\mathbf{r}}$ $A_{\mathbf{r}}$ $A_{\mathbf{r}}$ $A_{\mathbf{r}}$ $A_{\mathbf{r}}$ $A_{\mathbf{r}}$ $A_{\mathbf{r}}$ $A_{\mathbf{r}}$
$C_{i,i+1} , ' \mathcal{A}_{\vec{l}} , _{\vec{l} i} , \\$	
$\mathbf{M}_{\mathbf{II}}$	$N \longrightarrow I \longrightarrow I_{\Gamma} \longrightarrow I_{\Pi} \longrightarrow I_{\Pi$
N , I III ,	$N \cdot m_T \cdot $
$\mathbf{E}^{\pm} \mathbf{A}_{ab} = \mathbf{A}_{ab} \mathbf{F}^{b}$	$N \cdot m_{T} \cdot m \cdot d_{A} \cdot A_{A} \cdot p_{A} \cdot E_{F} \cdot A_{A} \cdot p_{A} \cdot A_{F} = \dots$ $m_{T} \cdot m_{T} \cdot m \cdot d_{A} \cdot p_{A} \cdot p_{A} \cdot A_{A} \cdot p_{A} \cdot p_{A$

Table 7 MA. A_{Γ} , $A_{\Lambda}A_{\Lambda}$, $A_{\Lambda}A_{\Lambda}$, $A_{\Lambda}A_{\Lambda}$, $A_{\Gamma}A_{\Lambda}$, $A_{\Gamma}A_{\Lambda}$, $A_{\Gamma}A_{\Lambda}$, $A_{\Gamma}A_{\Lambda}$, $A_{\Gamma}A_{\Lambda}$, $A_{\Gamma}A_{\Lambda}$

	٠, ١,		M ,			
	N r · · · · · · · · · · · · · · · · ·	C _r (N=418)	-	C _f (N=407)		
1, 1, 1, 1, 1 / 1, 1						
(. 00,000)	1.270	1.650	1.412	2.757		
A (000,000)	3.838	5.255	3.723	7.866		
Ar Ard . ris a						
$A (I_r)$	67.3	65.1	66.9	66.0		
TILL AT THE A SEC.	0.23	0.26	0.55	0.55		
A_{Γ} / A_{Γ}	0.05	0.04	0.07	0.12		
≥ † 4 de .						
M	0.42	0.46	0.91	0.91		
$\mathbf{D} \hat{\mathbf{I}}_{\mathbf{A}}$	0.09	0.10	0.05	0.05		
ī _n d,	0.66	0.54	0.74	0.58		
The law law er						
# <u>_</u> = .,,	0.42	0.31	0.65	0.53		
$G \vdash_{\mathbf{r}} \vdash$	0.01	0.01	0.06	0.10		
Trid.	0.10	0.08	0.19	0.23		
N . L .	0.47	0.60	0.10	0.14		
N r was war . '	(r/ · r · · ·					
M	3.3	2.7	3.3	2.8		
$N = I_{\Pi'}$	0.4	0.3	0.6	0.4		
rildr of do.	2.5	1.7	2.5	1.7		
Ar of Ass.	0.9	1.1	1.1	1.2		
rodr of do.	0.3	0.2	0.3	0.2		
T. P. (In	0.9	0.7	1.0	0.7		

<u>M</u> ,	
	_

Table 8	(-)	a. T	,)
---------	-------	------	----

	Crw		N r		C _T M (N=407)		N r		
	(N=418)						M (N=302)		
$N : A_{\Gamma\Gamma}$	3.626	0.22	102.731 4.522 22.629	0.17		1.21	77.383		
C	-9.780	-0.04	-408.573	-1.10	19.110	0.05	213.975	0.58	

Table 9 D \cdot_{Γ} $\cdot_$

	Cr		N 1		Cr		N r	
	(N=418)		(N=302)		M (N=407)		M (N=302)	
I_{Γ} , I_{Γ} , I_{Γ}								
r⁴ r ((000)	-0.001	-0.80	-0.007	-3.37	0.001	0.47	0.003	0.78
e the	2.403	2.04	-0.606	-0.36	-0.300	-0.33	0.087	0.05
(000,000)								
A (000,000)	0.004	0.10	-0.023	-0.45	0.039	1.02	-0.039	-0.68
Ar Ar Ar ar								
A	-0.690	-3.89	-0.462	-2.61	-1.317	-5.84	-1.601	-6.85
Et 1 a								
$r \mid I_{\Gamma}$	0.736	0.37	1.612	0.62	-4.771	-1.75	-4.926	-1.75
\mathcal{A}_{Γ}	5.687	1.37	-15.148	-2.21	-8.083	-1.64	-11.162	-1.88
$\mathbf{M}_{\mathbf{II}}$,	3.642	2.11	-0.440	-0.19	4.617	1.03	8.078	1.62
D. A.	-7.934	-2.46	-12.400	-2.67	-19.682	-3.12	-6.141	-1.02
Tr4)	-0.012	-0.01	5.285	2.10	5.066	1.83	-0.950	-0.29
1 12 1 11 11								
g . = . , , , ,	18.068	9.29	13.545	5.63	13.342	3.48	18.713	3.75
$\mathbf{G} + \mathbf{r}$	3.624	0.48	16.414	1.56	-6.761	-1.19	-3.610	-0.47
r, 1,	13.131	4.57	19.355	5.24	10.849	2.59	12.535	2.27
Cr was and	11 . 11 . s							
M _{III} ,	0.487	0.26			-1.086	-0.43		
$N = I_{\mathbf{II}}$	0.443	0.31			0.138	0.09		
. In the	-2.346	-1.70			-0.503	-0.29		
	-0.932	-0.37			-6.437	-2.04		
C , 1,	32.969	2.74	31.115	2.51	92.827	5.28	119.268	6.71

Appendix 2 Joint maximum likelihood estimation of the coresidency, transfers and labour supply equations

The state of the s

$$C_{i} = 1 \left(\eta_{0} + \eta_{1} Z_{i}^{P} + \eta_{2} Z_{i}^{C} + \eta_{3} H_{i} + \nu_{i} > 0 \right)$$

= 1(\eta Z_{i} + \nu_{i} > 0) (7)

Er

$$TR_{i} = \max \left(\pi_{0n} + \pi_{1n} Z_{i}^{P} + \pi_{2n} Z_{i}^{NC} + u_{1i}, 0 \right)$$

= $\max \left(\pi X_{i} + u_{1i}, 0 \right)$ (8)

 $[1,Z_i^P,Z_i^{NC}]$. F.A., $[1,Z_i^P,Z_i^{NC}]$.

$$LS_i^P = \max \left(\beta_{0n} + \beta_{1n} Z_i^P + \gamma_{1n} T R_i + \varepsilon_{1i}, 0 \right)$$

= \text{max} \left(\beta W_i + \gamma T R_i + \varepsilon_{1i}, 0 \right) (9)

 $\mathbf{r} = \mathbf{r} = i \mathbf{r}$, $\mathbf{r} = \mathbf{r} = [1, Z_i^P]$.

 $A = (1, \dots, A_{+n}, \dots, \prod_{\mathbf{T} \in \mathbf{T}} (1, \mathbf{T} - \mathbf{T}) - A_{\mathbf{T}} - (1, \dots, \mathbf{T}) - A_{\mathbf{T}} - (1, \dots, \mathbf{T}) + (1, \dots, \mathbf{T}) - (1, \dots, \mathbf{T}) + (1, \dots, \mathbf{T}) - (1, \dots, \mathbf{T}) -$

$$\begin{pmatrix} \nu_i \\ u_{1i} \\ \varepsilon_{1i} \end{pmatrix} \sim N \begin{pmatrix} 0 \ 1 & \rho_{\nu u_1} \sigma_{u_1} & \rho_{\nu \varepsilon_1} \sigma_{\varepsilon_1} \\ 0 & & \rho_{u_1 \varepsilon_1} \sigma_{u_1} \sigma_{\varepsilon_1} \\ 0, & & \sigma_{\varepsilon_1}^2 \end{pmatrix}$$

of According to the state of a discontinuous for the state of the stat

2.1.1 Coresiding ($C_i = 1$)

 $L_{1i} = \Pr\left(C_i = 1\right)$ $= \Pr\left(\nu_i > -\eta z_i\right)$

 $=1-\Phi(-\eta z_i)$

2.1.2 Non-coresiding, receiving positive transfers and having positive labour supply

$$(C_i = 0, TR_i > 0, LS_i^P > 0)$$

$$L_{2i} = \Pr(C_i = 0, TR_i = tr_i, LS_i^P = ls_i)$$

$$= \Pr(TR_i = tr_i, LS_i^P = ls_i) \times \Pr(C_i = 0 | TR_i = tr_i, LS_i^P = ls_i)$$

$$= \Pr(u_{1i} = tr_i - \pi x_i, \varepsilon_{1i} = ls_i - \beta w_i - \gamma tr_i)$$

$$\times \Pr(\nu_i < -\eta z_i | u_{1i} = tr_i - \pi x_i, \varepsilon_{1i} = ls_i - \beta w_i - \gamma tr_i)$$

$$= \varphi_2(tr_i - \pi x_i, ls_i - \beta w_i - \gamma tr_i) \times \Phi(-\eta z_i | tr_i - \pi x_i, ls_i - \beta w_i - \gamma tr_i)$$

2.1.3 Non-coresiding, receiving positive transfers and not working

$$(C_i = 0, TR_i > 0, LS_i^P = 0)$$

$$L_{3i} = \Pr \left(C_i = 0, LS_i^P = 0, TR_i = tr_i \right)$$

$$= \Pr \left(TR_i = tr_i \right) \times \Pr \left(LS_i^P = 0, C_i = 0 | TR_i = tr_i \right)$$

$$= \Pr \left(u_{1i} = tr_i - \pi x_i \right) \times \Pr \left(\nu_i < -\eta z_i, \varepsilon_{1i} < -\beta w_i - \gamma tr | u_{1i} = tr_i - \pi x_i \right)$$

$$= \phi_2(tr_i - \pi x_i) \times \Phi_2(-\eta z_i, -\beta w_i - \gamma tr_i | tr_i - \pi x_i)$$

2.1.4 Non-coresiding, receiving no transfers and working

$$(C_i = 0, TR_i = 0, LS_i^P > 0)$$

$$L_{4i} = \Pr \left(C_i = 0, TR_i = 0, LS_i^P = ls_i \right)$$

$$= \Pr \left(LS_i^P = ls_i \right). \Pr \left(TR_i = 0, C_i = 0 \middle| LS_i^P = ls_i \right)$$

$$= \Pr \left(u_i = ls_i - \beta w_i - \gamma tr_i \right) \times \Pr \left(u_{1i} < -\pi x_i, \nu_i < -\eta z_i, |\varepsilon_{1i} = ls_i - \beta w_i - \gamma tr_i \right)$$

$$= \phi(ls_i - \beta w_i - \gamma tr_i) \times \Phi_B(-\pi x_i, -\eta z_i | ls_i - \beta w_i - \gamma tr_i)$$

2.1.5 Non-coresiding, receiving no transfers and not working

$$(C_i = 0, LS_i^P = 0, TR_i = 0)$$

$$L_{5i} = \Pr \left(C_i = 0, LS_i^P = 0, TR_i = 0 \right) \\ = \Pr \left(\nu_i < -\eta z_i, \varepsilon_{1i} < -\beta w_i - \gamma t r_i, u_{1i} < -\pi x_i \right) \\ = \Phi_3 \left(-\eta z_i, -\beta w_i - \gamma t r_i, -\pi x_i \right),$$

$$\log L_{i} = 1(C_{i} = 1) \times \log L_{1i} + 1(C_{i} = 0, TR_{i} > LS_{i} > 0) \times \log L_{2i}$$

$$+ 1(C_{i} = 0, TR_{i} > 0, LS_{i} = 0) \times \log L_{3i}$$

$$+ 1(C_{i} = 0, TR_{i} = 0, LS_{i} > 0) \times \log L_{4i}$$

$$+ 1(C_{i} = 0, TR_{i} = 0, LS_{i} = 0) \times \log L_{5i}.$$

References

```
A. A. J. G. C., G_r ..., 9:99–108

A. J. J. F. H. A. J. F. K. J. J. L. (1997) A_r ... A_r A_r
    B<sub>1</sub>, K, A<sub>1</sub>, ... (2001) L, ... (2001
T. A. A.A. . T. , 1. A. . T.
(2):305-314
I = A_1 + A_2 + A_3 + A_4 + A_4 + A_5 + 
    \mathbb{F}_{\mathbf{L}}^{\mathbf{L}}, \mathbb{F}_{\mathbf{L}^{\mathbf{L}}^{\mathbf{L}}, \mathbb{F}_{\mathbf{L}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}, \mathbb{F}_{\mathbf{L}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{L}}^{\mathbf{
H \mathcal{A}_1 ... J (1992) ... J \mathcal{A}_1 ... \mathcal{A}_1 ... \mathcal{A}_1 ... \mathcal{A}_1 ... \mathcal{A}_1 ... \mathcal{A}_2 ... \mathcal{A}_3 ... \mathcal{A}_4 ... \mathcal{A}_5 ... \mathcal{A}_6 ... \mathcal{A}_7 ... \mathcal{A}_8 ... 
  . JE, 108(2):413–435
I = A.I : K \mid A = \begin{pmatrix} 1 \\ 1 \end{pmatrix} E = \begin{pmatrix} 1 \\ 1 \end{pmatrix} A = \begin{pmatrix} 1 \\ 1 \end{pmatrix} E = \begin{pmatrix} 1 \\ 1 \end{pmatrix} A = \begin{pmatrix} 1 \\ 1 \end{pmatrix} 
                                      \mathbb{Z}.D., \mathbb{Z}, \mathbb{Z}, \mathbb{Z} \mathbb{Z}.
```

- $L_{\text{IM}} = L$, $M_{\text{IM}} = (1997) M_{\text{IM}} = \mathcal{L}_{\text{IM}} = \mathcal$ \tilde{D} 34(1):115–134
- $L = A_{r} / (1985) M_{s} / A_{r} / (1985) M_{s} / A_{r} / (1985) M_{r} / (1985)$ D 26:627–644

- 151(3):422–437
- 37. L, B (1997)

 38. L, AEA , T , AEA , T , AEA , T , AEA ,

- G(1997) G(19(4):487-511
- pro B(1 (1995) . . . row of a row B(1) the day of row row r, N.