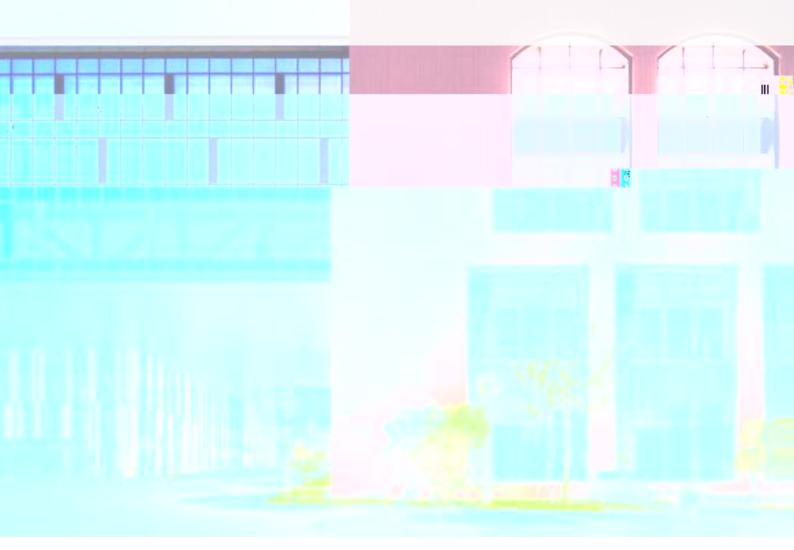


I.	Net-Zero Goals and Pathways		3
	1.	School Profile	4
	2.	Background and Goal Setting	4
	3.	Pathway and Implementation Plan	6
II.	I	Methodology	8
	1.	Measurement Scope	9
	2.	Accounting Methodology	9
III.	2024 Carbon Footprint Analysis		10
	1.	Organizational Boundary	11
	2.	Reporting Period	11
	3.	Emission Factor Selection	11
	4.	Greenhouse Gas (GHG) Emissions Calculation	11
	5.	Data Quality Assurance	16
IV.		Carbon Neutrality Initiatives	18
	1.	Leveraging Academic Expertise for Innovation	19
	2.	Advancing Public Policy Recommendations	19
	3.	Talent Development for Industrial Transition	20
	4.	Low-Carbon Campus Transformation	21
	5	Promoting Low-Carbon Lifestyles	22

Ekcgejcigcfcghjg gkiejcgigeh kij ckk jg43 eg 0Cick jkdcef. jgRckCigggccfgfk4238d 39: kicckg.gcdkjkijgi/gdlgekghjfkijgidc ggcgkggdg4℃cdgg/kfkcggjkgkighh kkjgkegcg307℃0

Ejkc g g ekcgejcigcgck c c hkghh cejlggge/g k g c i g c f jkij/ ck fg g g 0Cff g ki ekcgejcig g g c c g f ck h giciki k i dc i g c eg c f j fki kcgck 0C jgiggcfgdcg hjg97 j Ug k hjgWkgf Pck I g g c C g d Ug g dg 44. 4242. Rgkf g ZkIk ki c egf j c Ejkc f ec g k Pck c Fg g kgf E kd k PFE+d cf ki g ki kelg c f g c g . kg g c EQ4 g k k dgh g 4252. c f cejlg g ec d g ck dgh g 42820 Vjg f c ec d i c h g c ki g k k c f cejlg ki ec d g c k g g g Ejkc) c gi ke g g g ki g eg c f g k g c ejc g i g . c g c k g e k g h g ki c j c g f h g h j c k 0


cki g kj ck c f cecd dlgekgcfk ekc g kdkkkg.

VkijcWkgk Uej hGe kecfOccigg VkijcUGO+cejgf
ccccecd h kcggcfg kikkkckgk 42450Vjk gcke
ghh ck ckh kkkcgkk. hckgecd gck
e kg.cfejccekgeg/dcgffgecd kckcjc0Vjijjkg.

VkijcUGO gg e gjgkgcgkiggjgicIJI+gkk
hkg.kfgkh kkgh /ecd chck.cfgckckgk

I.

1. School Profile

H fgf k 3;:6. Vkij c UGO jc c k k cf c eg gfig c f e k c g gcfg h Ejkccf jg f c kg dgc f/ec ej hge ke c f ccig g cfj f kgik.fgfkeck cfg ge ckeg cg 0H g 62 gc. Vkij c UGO jc gf jg ck k cg ckki. ekg khle g gc ej. ekc kh g eg c f k g c k c g ej c i g . c f g dge g c f/e c ej h ge ke c f c cig g 0

Vkijc UGO jc g g f g c g Cee ki Ge ke Hkceg ck. G g g g jk c f U c gi Ngcfg jk c f Q i c k c k O c c i g g Occig g Uekgegef Gikggkief Ocgki OVigjg. jgge gh kk/ g g fkek kg hjg g kec ge ke.c kgf ge ke.d kg cf kk ck. cf ccig g ekg eg cfg ik gg k i 0 c j g jg Uge g ckc h jg Ejk c PckcODCGfeckUgkEkgg0

2. Background and Goal Setting

Ekcgejcigjc dge gcgk i dcejcgig0 g gekcgejcig. jgkgckce k jce kgf j ij kcgccigg g kg jg RckCigg g kki dc g gc g kg g dg 4℃ jkg ki ghh ec k c 307° C cd g g/k f kc g g 0E kg j c g h c gf c f g ge ke c f ekc k g g gf ec d g k k gf e k kekg c h c k c f /ec d ck cd g f g g 0

Vjg Ejk g g I g g c cejg i gc k c eg jg k g hek c g ejc i g. cekg c kekcgki dc ekcgi g c egc fjc h c fjg f c ecd ic. k0g0 kki jcg EQ4g kk gc dghg 4252cf cejkg gecd g ck dgh g 42820Vjk e k g ghge Ejk c) jki j g kd g $c\ k\ fg \qquad c\ f\ i\ dc\ g\ k \qquad g\ c \qquad ge\ k\ .\ d\ c \qquad k \qquad j\ g\ fkge\ k \quad h$ Ejkc) ckcdgge kecfekcfgg g0 fg cejkggjkic.jg

EjkggI g g jc h cgf c gkg hf g ke f c/ecd kekg.

ke fki gijgkijgefl g hjgggi e g. kiegc ggi.

k ki jgghhekge hggi kkck.fgg kiceke c ge .cf
gijgkige ikec gek cfg ck0

Vkij cWkg k jc cg jgkkkckg cg jg gcfcejkggfc dg hcfcegfggk ck kc dg hecd gcegggcejcgc. ej cg/ecd giggck cf g.ggggeke gg.g/ecd cck.g/ecd dkfki.geO Icc 4246.VkijcWkgkg jgEc Ecd PgcRckiY kiI e gjgkg jh cf jge ek hjgec ecd gckicfecd gckO Qedg4246.jg4246I dcEcd PgckC cRigTg.e/cjgfdVkijcWkgk) kgh Ecd Pgck Cf jgkkk.cfggegf.

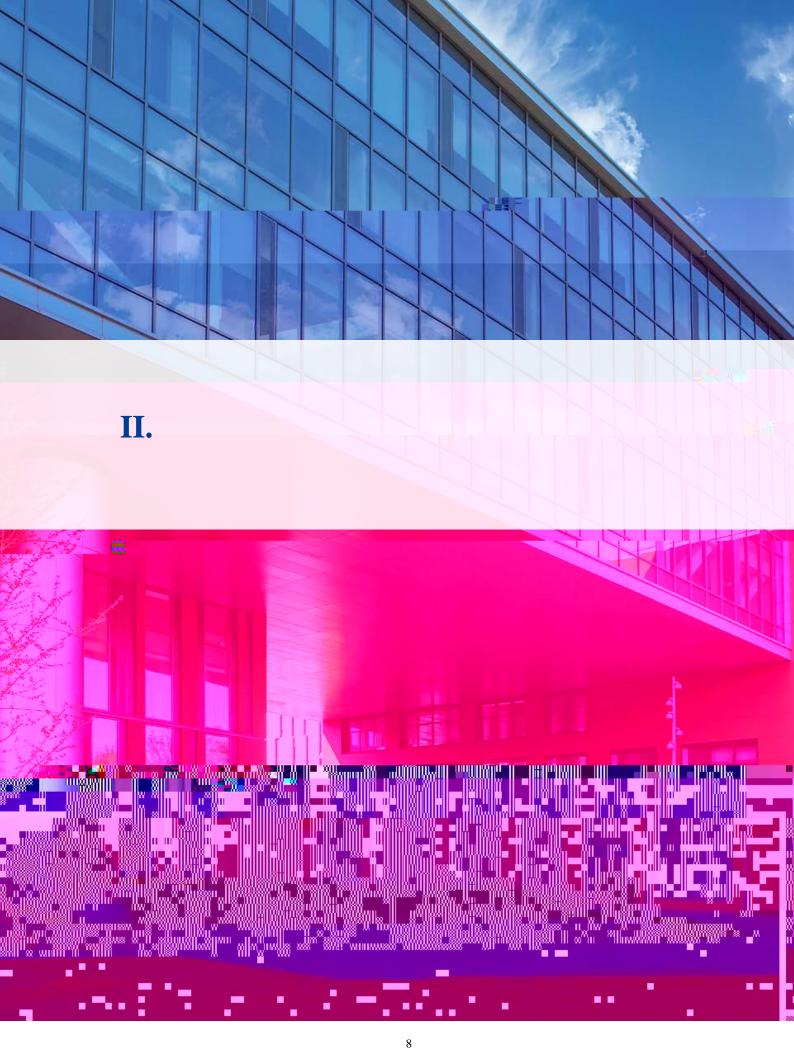
UGO) g g i e k c f ec d g k k . jgh g f g g c h j g e gig. cfjgcck hjg gej ikeccfge ke hgckdkk. Vkij cUGO je g ed kjgf 4257 c k g/g e ig ge 0Vje k.

0


3. Pathway and Implementation Plan

Vkijc UGO k k g g c kfkg k c cgi ge c ki jg g hege ggi cficf c g ceg cfkk ch kggi 0C jg cgkg. jg ej k gijg ggi cig g.k gggi ghhelg e cf gf eg ggi cgj ijkg kig cfghkgfggi ccigg g 0


cffkk g g i g. V k i j c UGO k cf /ec d gc g k j g c gc h blog c f c g 0Vjg ej k cf ec g i gg blog. g g ge ke blog cf ggki.cf gf eg jg g h cg f e g 0 cffkk.jg ej k ge cig fg. hee c f chh cf /ec d c g g j f. ej c eeki.cki kidkec ck.cfgfegjgghkcgec. ig gd gf eki ecd g k k 0


C jg c g k g. V k i j c UGO k ce k g c kek c g k j g g g c e j. h c k cfk ggck hkgckccff gkeecd gkk kekg.e kdg Ejkgg kf i dc ekcgi g ceg. cf kfg ekg khke dck cf kggec higgcfgekk/cki0Vjgej kgijg c g jk kj k g c k c k k k l k g j g f g g c f c keck h /ecd gej ikg 0Vjg ej k c g i jg e g ck cfe keck kjcge hjgekg.cflk gjg k g g c k hf c/ec d lekg k c k hkg f h j g ekg 0

e e k.dcgf kk/fg j f hekcgejcigk gcfcekgg g

kgckccffgkeecdgkk kekg.VkijcUGO.kcekgckicek gckgjgichecdgckOVjgejkekgghkkidgcekegjijikiggcejekdgjgdkfkihcjcgfhghckfcfjggckckhiggcfckcdgfggg0

1. Measurement Scope

Ecd h k ghg jg cgkk h EQ4 cf jg IJI fkge
kfkge iggcgfd kfkkfc. ickck.gg fe kjkc gekhe
gkfhkg. c gc gfkg hecd fkkfgg kcg EQ4g+0 kc
k ckfkec cg jgk ce hekcgejcig.ghgeki jgfkge
kfkgek ce hj ccekkkg jggk g0

Vjgecd h k hc ickck k jg cc hi gg j gicg k k
iggcgfdckkk g000 ej .dkg.ge0+fkik gck 0Vjgg
gkk cegh jg ickck) fkgeggie k g00ggekek.
jgc+ h kfkgecekkkg. ej cg ggeki. ejck
ccigg.ge0

2. Accounting Methodology

Vjg gjf i h gc ki jg ecd h k k dcgf ce k k fc c c f g k k hre 0 Qic k c k c ce k k fc c / ke fki g gi e k.

c ck kgcig. cg kc h . cf c g ig g c k / k g c kec e kgf k cc k 0 U d g g . jg g ce k k fc c c g k kgf d jg e g fki g k k hre I J I g k k g k hce k k fc c+ ece c g jg c I J I g k k 0

1. Organizational Boundary

Vjg ickck cd fc hjk ecd h k cee kik gk jg ch Qgck cE k cee fc eg kj jg UQ 36286 cfcf cf kj ghgg eg IJIR e E cgCee kicfTg ki Ucfcf0Vjgecd h khVkij cUGO k 4246 ece cgf k jk g ge cggkk h jg ej) Dgkki/dcgf cecfg ke hækkg. k Ujg jg ec gck cf jg cekkkg hgg cg g0

2. Reporting Period

Vjk g e g ec d h k fc ch jg gc 4246. kj c geldhe k gh c g h

Le c 3.4246 F geg dg 53.4246.cf ld g c gc/k g c kc k g ghg g eg

h V k i j c UGO) h g ck cdkk fg g g 0

Vkij c UGO jc e gc g kdkkkg k ecd h k cee ki. kj c fgfkec gf cee ki gc g kd g h f c c e ge k . ec e c k c f g ki 0
Vjk g k c kf k jg g k g kgf g gf 0

3. Emission FactorTf1 0 0 1 9.024 4880040011 FETQ EMC Span MCID Lang (en-S) BDC 0.0000

g k k + c f Ue g 5 jg k f k ge g k k + 0 Ue g 3 k e f g g k k h

V k i j c UGO) h g e d k c f h i k k g g k k e g 0 Ue g 4 e k h

g k k h g ge k k c f e j c g f j g c e g f d V k i j c UGO 0 Ue g 5

k e f g g k k h j g / f k g e e g e j c d k g c g. j g

c f g gc ej litheg c f jg litheg lifg Dglkki Ujg jg ec +0Vjg ejc gf jgc g k k jg gcejki c f g gc ej litheg ceg k Dglkki.c f k ligf eg c d jg jgc ki c k hVkij c W k g k 0V g g jg cee ce h jg ec e c k . g e ge gf jg e k h c c i c . g ge læk h c g c f lækc c c g h jg jgc ki c k k 42460Cee fki jg k h Vkij c UGO) d kfki c gc Vkij c W k g k) jgc ki d kfki c gc g ec e c gf jg ec d g k k h Vkij c UGO) ejc gf jgc 0 Vjg likc ec e c k h Ue g 4 g k k h Vkij c UGO k 4246 k 6.: 5; 049 h EQ4 0 Ugg jg cd gdg h jgd gc f fc c0

Vcd g 4 V k i j c UGO) Ue g 4 E c d H k k 4246

Saana	Emission actorous	Carbon emissions	Total carbon	
Scope	Emission category	(tons)	emissions (tons)	
Saama 2	Electricity	5.549\2	4 920 27	
Scope 2 —	Heat	3.733@9	4,839.27	

(3) Ue g5 Qjg fkge Gkk +

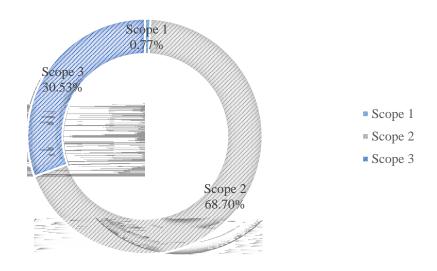
Vkij c UGO) e g 5 g k k c g ck jg ecd g k k ig g c g d d k g c g. kek c c c g. k k i c g c f d gf c g 0 V jg ec d g k k h d k g c g c g ec e c g f d h f g h c c k . c g . c g c k. d c c f ec. cee f k i jg c g ge f h jg h c c f c h h V k i j c UGO 0 E c d g k k h k f c g c f sewage g c g c g ec e c g f d c g f jg c k k g h k f c g c f sewage 0 V jg ec d g k k h kek c c c g. k k i c g c f d g f c g c g ec e c g f cee f k i jg k e k k V k i j c UGO) Dgkk i g c j k i c f g g c e j h keg c f jg h keg k g Dgkk i U j g j g ec +0 V j g h k c ec e c k h U e g 5 g k k h V k i j c UGO k 4246 k 2,150.48 h EQ 4 0 U g j g c d g d g h j g d g c f f c c 0

Vcd g 5 V k i j c UGO) Ue g 5 Ec d H k k 4246

Scope	Emission category	Carbon emissions	Total carbon	
Scope		(tons)	emissions (tons)	
_	Municipal water	6 5 8	2,150.48	
	Solid waste	9706		
	Sewage treatment	93659		
	Car travel	39505		
Scope 3	Subway	2032		
-	Train travel	: 0 4		
-	Air travel	3.9890 5		
-	Paper	5207;		
	Bottled water	39 % 6		

(4) U c

Cee fki jg cd g ec e c k g . jg c ec d g k k h V k i j c Wkg k Uej hGe ke cfOccig g k 4246 k 9.266084 hEQ4. h jkej jgg k k hUe g3 k 54.37 hEQ4. Ue g4 k 6.: 5; 049 hEQ4. c f Ue g 5 k 4.372 6: $hEQ_40Fg ckgf d gc f$ hfc c k c h0

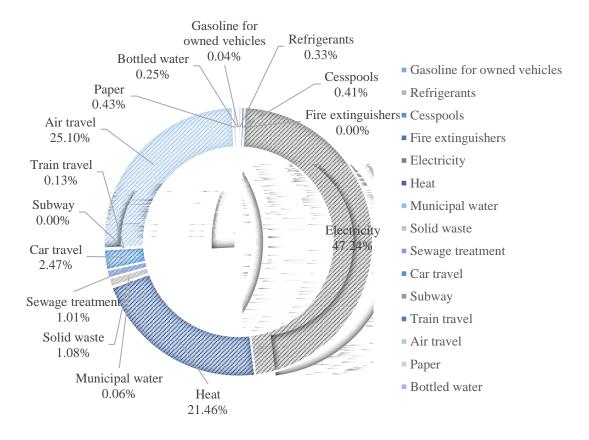

Vcd g 6 V k i j c UGO) Ec d H k k 4246

Scope	Emission category	Carbon emissions	Total carbon	
Scope	Emission category	(tons)	emissions (tons)	
	Ic kgh gf gjkeg	4076	54.37	
Coope 1	Tgh ki g c	45048		
Scope 1	Eg	4: 078	34.37	
	Hkgg ki kjg	2@3		
Saama 2	Electricity	5.549\&2	4,839.27	
Scope 2	Heat	3.733@9		
Scope 3	O kekc cg	6058	2,150.48	

Ukfcg	9706
Ug cig gc g	93059
Ес с д	3950 5
U d c	2032
V ck c g	: 04
Ck cg	3.9890 5
Rc g	5207;
D gf cg	39 % 6

Total 7,044.12

H jg g gekg hIJI cee ki e g. Vkij c UGO) ecd h k k 4246 k ck e gf hUe g 4 kfkge g k k +c f Ue g 5 jg kfkge g k k +ecd g k k . h jkej Ue g 4 ecd g k k cee h jg jkijg jc g h8: 092' .h gf d Ue g 5 ecd g k k kjc jc g h52075' 0 Ue g 3 ecd g k k cee gf h jg g jc g h2099' 0 Ugg jg kg ejc dg h fg ck 0



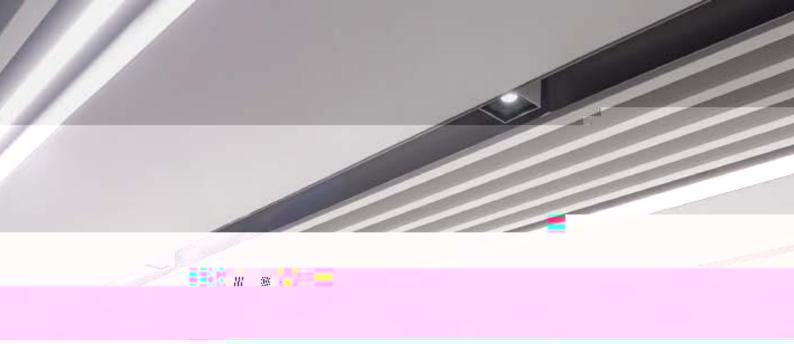
Hki g 3 V k i j c UGO) Ec d H k Uec g U e g k 4246

H jg g gekg hg kk ecgi kg. Vkij cUGO) ecd h kk 4246

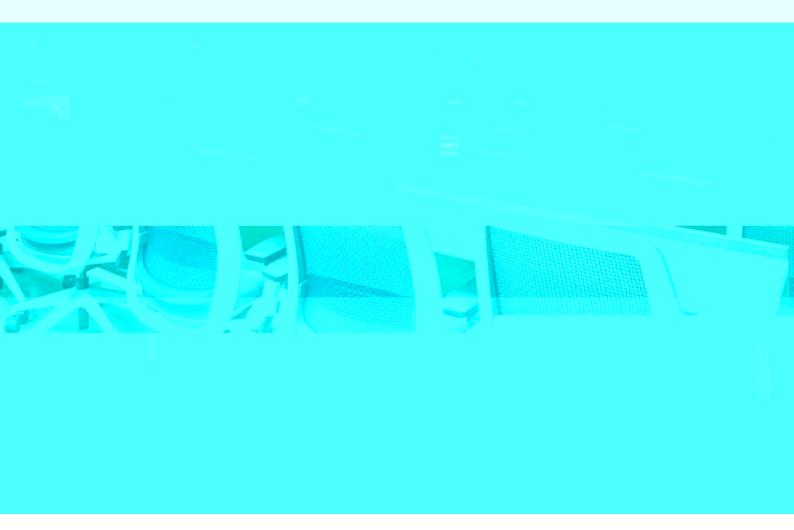
ck e k h ejc gf g ge kek.ck c g c f ejc gf j gc. kj ejc gf g ge kek cee ki h jg j ki j g j c g h ec d g k k c 69046'.ck c g cee ki h j g ge f j ki j g j c g h ec d g k k c 47082'.cf ejc gf j gc cee ki h j g j kf j ki j g j c g h ec d g k k c 43068'.cf j g cd g j g g ec d g k k cee h ; 502' h V ki j c UGO) c ec d g k k 0 V j g g h j g e k ec gi kg cee gf h cd 8' h j g c ec d g k k 0 U g kg ejc d g 0

Hki $g \cdot 4 \cdot Ec \cdot d$ H k $Uec \cdot g \cdot U$ e $g \cdot k \cdot 4246 \cdot G \cdot k \cdot k$ ec gi +

5. Data Quality Assurance


Vjk I J I g k k g k k cee fc eg kj UQ 36286 c f k dc gf jg c g k ek g h gg c eg.e gg g .e k g e . c c g e c f cee ce 0C ge h fc c c k c c i g g j c g j g h k i e g

Sck Occig g Uchh Og dg hjg cee ki gc cg cgf kj
efkcki jkgcek ci gg cfg cg cfg g c
cgj fg. ickck.cf lge 0


Sck Occig g Cekkkg Qgck c egf gcgh cgf0V gg jg gkg g h gekk.fcc ccig g eg g ck gkheck cekkkg h d jiggccf gekhegkk 0

Iggc Sck Xgkhleck Efeki ki g kcg ckgkhleck he g jccg g g kijcf c gcf kcee cekgf kifcce gek cf eg ki.fcc fgki.cfg kk c khleck 0

IV.

1. Leveraging Academic Expertise for Innovation

Vkijc UGO ceg ki khkec g jck jgjgc j c f ck cd g f g g hEjkc) ge . k kkki e k c g e j c i g/g c gf c gc e j c e c d g c k c f ec d gc k i 0 V j g e j k e k g f g g c i k i g gc e j e g kfgk kij h ekc fgg g c fi kfc eg e kkec k g jc ki Ejk c) e g c f h g ge ke c f ec g0Q L g 4; . 4246. R hg NkF ij i h Vkij c UGO g gc gf jg P c k c Gc / /Yg F c c V c hg J d P fg I gg kiR g fg Tggcej Tg c jg hk Ejkc I gg E kiR g $E \quad \text{hg g eg. e /c j} \quad \text{gf d} \quad \text{jg} \quad \quad \text{k g h} \quad I \quad \text{dc} \quad \quad \text{f} \quad \quad \text{c V k i j c W k g} \quad \text{k c f}$ jg Nkig I gg E kiR g Fg g g Tg gc ej Eg g OVjk g Hig elg khe h jg fgg k gi ck h jg fkike ge c f g g i g fg jg f c ec d i c 0 Q L 53. 4246. R hg Ejg [d c f jk e cd c) cg. Ogfkc E gcig h Ek cg Ejc ig cf U ck cdg R fe E k G kfg egh jgJ d kf Xgjke gOc g. c c c fgf jg; jJkijg Gfeck Uelog khee Tggcej Q cfki Cejkggg C cf J ckkg cf Uekc Uekg eg +0D e g k i j g gejc k j i j jkej gf kc c f ekc kh g eg i gg e k. jk g gc ej g c k ckg c g/ kg gf - ekckgf cjch /ecd fg g g 00 kih cf. jg ej ke kg he e ki/gfig hkg f g c gf ec d g c k. ke fki g gej ikg. gjf ikg.cf kekg. kfg g ekg khkecf k ckgcecfg ke h Ejkc) f c ecd cgi 0

2. Advancing Public Policy Recommendations

Vkij c UGO jc c dgg cekg ickkicf c kicecfg kecek kkg c f jgi c h f c/ecd kfgd gc j ijkfgc c f ke iig k h jg gckck h jg f c/ecd c gi O

Q Ocej 46. 4246. c jg Ejk c Fg g g H 4246 k. DckEj i/G. fgc c f Fk ki kjgf R hg hC . J c kkg c f U ekc Uekg eg c Vkij c UGO.

gicigf k c fkc i g kj Vk E . EGQ h C g. I gg Vgej i

ck cfFgg g Q kkg0

Q Ug g dg 42. 4246. jg 4246 V k i j c W k g k H Ec d P g c Ge c jgf c Vkij c UGO. dkiki igjg g gg ckg h iggcigekg. clggkg.cfg gfggkjgecd gck hkg f 0 Rc kek c g gf /ecd c h ck cj c c f g kk gf j g h g hi gg f g g 0

Q Fgeg dg 5.4246. jg EjkcEcd Pg ck H .e / ickgfd Vkij c UGO. c eeg h e g gf c V k i j c W k g k 0V j g H h e gf P g Jkij/Sck Rfekg Heg Fkki Igg cf N/Ecd fkc Vc h ck 0

Q F geg dg 3: . 4246. c jg 4246 g Ecd Tg gc ej k g I gg Fgg g H j gfd DglkkiPg . jg V 32 I gg Fgg g Ecg h4246 gg gkgf0E/ggegfd jgEjkcD kg EcgEg g EDEE+h Vkij cUGO cfjg Dgkki Pg g Ecd Tggcej kg. jggecgeg k c gc gej i kec k c k . i gg c hce k i . i gg hk c eg. g g i c kk .eke c ge .c f i gg e k OVjg kfg g kecd g k f kc icfki fg h Ejkc) e cg /ecd ch ck 0

3. Talent Development for Industrial Transition

V gg jg cgike ggf higg cf /ecd fg g g cf cff g d i dc ckcdgfgg g ejcgig. VkijcUGO.c g hjgjggg kifgcg.cekgckcgfkjggcck.e ek.cf cg e kck hZkj i E gig. Vkij cWkg k0 Ug g dg 4246. Zk j i E gig eeg h c ejgf jg I dc I gg I g c eg Vc g R i c . ck ki e kcg cfki hg k c kji dciggi g cegec cdkkkg ce g ckcdgfgg g ejcgigcfklge g kck k jgh g0 Ci 4243. Vkij c UGO g gc gf jg Ejk c GEQ G g i c k fg ceeggcgjgh ck hce g cf gjgcek hkf kgcf

jg g h d ke c ck.ge0 Ygjcggcdkjgfcfk gfjgcggck cfgeeki g.k gfjggeekighhkekge.cfgfegfcfhk cfkekgck 0Ge ciggcejgcffg ckekcgkcek ejcckicgcfggekek.cki kfki ej.cfkigcdgcdgcdgcg0

Vj ij jg g c gi kg c f gc g . g ec i kf g hce c f f g ce keg /ec d khg.d c g /ec d e eg c f ce keg k j g d cf g ekc c f cecf g ke hkg f . c f e kd g j g d k f k i hc ck cd g h g 0

- [1] J c i [g 0 E c d g c k i . e c d g c k c g g k g c f h f ge ke c f ekc g c ke e j c i g]L 0 g c k c V c g G e j c i g . 4243. 2: + 3: /3;
- [2] Vjgfe g kgf Y ki I kfcegh Ecd Fk kfgRgcki cfEcd Pg ck k H cfHckjh g g ck h jgPg Fg g g Rjk j c ggcgf]L0 Tg eg cfJ c Ug g g .4243 33+8
- [3] U ck cd g c f j g c j f g g g h j g e k k f j g ce j k g g j g i c h f c e c d] L 0G i k g g k i E e k U c f c f k c k . 4244 24+49
- [4] I DIV 73588/423; . Uc fc f h d kfki ec d g k k ec e c k]U
- [5] I DIV 47:; /4242. I g g c g h ec e c k h j g e g j g k g g g i e k]U
- [6] FD33IV 39: 7/4242. Tg kg g h ec d fk kfg g k k cee ki c f g ki Ug keg g g kg]U
- [7] Dglkki O kekc Ge i cfG k g D gc 0 Dglkki Ecd G k k Tgfek Ogjfi h N Ecd Vcg Vkc Xg k + 42420
- [8] VIEGETRC 223/4244. E fg h ce leg h c i g/ ec g e hg g eg c f g j ldkk /ec d c g g]U
- [9] N Ej c 160G ki jg Og j f i h I gg j g I c G k k Cee ki k R d le D kfk i Q g c k G g kg]L 0E k c g Ej c i g T g g c ej . 4238. 34 5+80