• BETVLCTOR伟德官方网站
  • 經管郵箱
  • 教職工内網
  • 用戶登錄
  • EN
毛小介

管理科學與工程系    副教授

電話:(86)(10)62797044

辦公室:李華樓B418

郵箱:maoxj@sem.tsinghua.edu.cn

開放時間:周二16:30 - 17:30或預約

教育經曆

2016 ~ 2021 博士,統計學與數據科學,康奈爾大學

2012 ~ 2016 學士,數理經濟與數理金融,武漢大學


更多

工作經曆

2024.07 ~ 至今  (準聘)副教授,BETVLCTOR伟德官方网站管理科學與工程系

2021.07 ~ 2024.07  助理教授,BETVLCTOR伟德官方网站管理科學與工程系



更多

講授課程

管理科學中的實證方法(博士)

數據分析:推斷與決策(碩士)

概率論與數理統計(本科)



更多

研究領域

因果推斷、數據驅動的優化決策


更多

學術成果

論文詳見谷歌學術頁面https://scholar.google.com/citations?user=XtSSJm0AAAAJ&hl=en&oi=ao


論文發表

  • Yichun Hu, Nathan Kallus, Xiaojie Mao, Yanchen Wu. Contextual Linear Optimization with Bandit FeedbackThe 38th Annual Conference on Neural Information Processing Systems, 2024. (中國計算機學會A類會議)

  • Guido Imbens, Nathan Kallus, Xiaojie Mao, Yuhao Wang. Long-term causal inference under persistent confounding via data combination. Accepted by Journal of the Royal Statistical Society Series B, 2024. (統計學國際四大期刊)

  • Nathan Kallus, Xiaojie Mao. On the Role of Surrogates in the Efficient Estimation of Treatment Effects with Limited Outcome Data. Accepted by Journal of the Royal Statistical Society Series B, 2024.(統計學國際四大期刊

  • Nathan Kallus, Xiaojie Mao, Masatoshi Uehara. Localized Debiased Machine Learning: Efficient Estimation of Quantile Treatment Effects and Beyond. Journal of Machine Learning Research, 2024. (中國計算機學會A類期刊)

  • Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara. Inference on Strongly Identified Functionals of Weakly Identified Functions. Conference on Learning Theory, 2023. (中國人工智能學會A類會議)

  • Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara. Minimax Instrumental Variable Regression and L2 Convergence Guarantees without Identification or Closedness. Conference on Learning Theory, 2023. (中國人工智能學會A類會議)

  • Nathan Kallus, Xiaojie Mao, Kaiwen Wang, Zhengyuan Zhou (2022). Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning. International Conference on Machine Learning, 2022. (中國計算機學會A類會議)

  • Nathan Kallus, Xiaojie Mao. Stochastic Optimization Forests. Management Science, 2022(UTD 24期刊)

  • Yichun Hu, Nathan Kallus, Xiaojie Mao. Fast Rates for Contextual Linear Optimization. Management Science (Fast Track), 2022. (UTD 24期刊)

  • Yichun Hu, Nathan Kallus, Xiaojie Mao. Smooth Contextual Bandits: Bridging the Parametric and Non-differentiable Regret Regimes. Operations Research, 2021. (UTD 24期刊,論文獲得Finalist for Applied Probability Society 2020 Best Student Paper Competition). 

  • Nathan Kallus, Xiaojie Mao, Angela Zhou. Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination. Management Science Special Section on Data-Driven Prescriptive Analytics, 2022. (UTD 24期刊, Featured Article in Management Science Vol 68 Issue 3 with invited review at https://www.informs.org/Blogs/ManSci-Blogs/Management-Science-Review/If-You-Can-t-Measure-It-Bound-It-Credibly-Auditing-Algorithms-for-Fairness2).  

  • Nathan Kallus, Xiaojie Mao, Angela Zhou. Interval Estimation of Individual-Level Causal Effects Under Unobserved Confounding. The 22nd International Conference on Artificial Intelligence and Statistics, 2019.

  • Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, Madeleine Udell. Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved. ACM FAT* 2019: Conference on Fairness, Accountability, and Transparency in Machine Learning.

  • Nathan Kallus, Xiaojie Mao, Madeleine Udell. Causal Inference with Noisy and Missing Covariates via Matrix Factorization. The 32nd Annual Conference on Neural Information Processing Systems, 2018. (中國計算機學會A類會議) 


其他工作論文請見簡曆(https://cloud.tsinghua.edu.cn/f/a23b45043ed8466d844b/



更多

所獲榮譽

科研項目

數據驅動的決策方法,國家自然科學基金(優秀青年科學基金項目),主持,2024 ~ 2026

基于數據結合的長期因果效應推斷與決策,國家自然科學基金(青年科學基金項目),主持,2023 ~ 2025

面向供應鍊韌性與安全的行為決策理論與方法,國家自然科學基金(重大項目子課題),參與,2023 ~ 2027

硬件資源受限下的高效智能控制,科技部(科技創新2030重大項目),參與,2023 ~ 2025


獎項

BETVLCTOR伟德官方网站2023年度教學優秀獎

BETVLCTOR伟德官方网站2023年先進工作者,2023年科研優秀獎,2023年教學優秀二等獎

Applied Probability Society  Best Student Paper Competition, Finalist, 2020


更多

其他

指導學生:詳情請見簡曆(https://cloud.tsinghua.edu.cn/f/a23b45043ed8466d844b/)


本人不定期有助研項目的機會,歡迎數理基礎或編程能力紮實、有科研興趣且自驅力強的本碩同學郵件聯系我。請在郵件中附帶簡曆和成績單,并簡要描述(1)上過的數學、概率統計、運籌優化、計算機科學相關的課程;(2)預計能投入的時間(如預計參與的期限以及參與期間每周大緻能夠投入的時間,請提供合理可行的估計);(3)考慮參加助研工作的動機(如個人興趣、未來發展計劃等)。


對于有意向申請管理科學與工程專業博士研究生的同學,請重點關注經管學院官網上的招生夏令營通知。夏令營一般在4 ~ 5月份報名,春季學期末正式舉辦,通過筆試、面試綜合考核來招錄次年秋季入學的博士研究生。九月份研究生推免會有額外補錄機會,但錄取名額一般較少。博士研究生招生由系招生委員會統一進行考核決定,本人不單獨進行招生。


更多
Baidu
sogou