Yichun Hu, Nathan Kallus, Xiaojie Mao, Yanchen Wu. Contextual Linear Optimization with Bandit Feedback. The 38th Annual Conference on Neural Information Processing Systems, 2024. (中國計算機學會A類會議)
Guido Imbens, Nathan Kallus, Xiaojie Mao, Yuhao Wang. Long-term causal inference under persistent confounding via data combination. Accepted by Journal of the Royal Statistical Society Series B, 2024. (統計學國際四大期刊)
Nathan Kallus, Xiaojie Mao. On the Role of Surrogates in the Efficient Estimation of Treatment Effects with Limited Outcome Data. Accepted by Journal of the Royal Statistical Society Series B, 2024.(統計學國際四大期刊)
Nathan Kallus, Xiaojie Mao, Masatoshi Uehara. Localized Debiased Machine Learning: Efficient Estimation of Quantile Treatment Effects and Beyond. Journal of Machine Learning Research, 2024. (中國計算機學會A類期刊)
Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara. Inference on Strongly Identified Functionals of Weakly Identified Functions. Conference on Learning Theory, 2023. (中國人工智能學會A類會議)
Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara. Minimax Instrumental Variable Regression and L2 Convergence Guarantees without Identification or Closedness. Conference on Learning Theory, 2023. (中國人工智能學會A類會議)
Nathan Kallus, Xiaojie Mao, Kaiwen Wang, Zhengyuan Zhou (2022). Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning. International Conference on Machine Learning, 2022. (中國計算機學會A類會議)
Nathan Kallus, Xiaojie Mao. Stochastic Optimization Forests. Management Science, 2022. (UTD 24期刊)
Yichun Hu, Nathan Kallus, Xiaojie Mao. Fast Rates for Contextual Linear Optimization. Management Science (Fast Track), 2022. (UTD 24期刊)
Yichun Hu, Nathan Kallus, Xiaojie Mao. Smooth Contextual Bandits: Bridging the Parametric and Non-differentiable Regret Regimes. Operations Research, 2021. (UTD 24期刊,論文獲得Finalist for Applied Probability Society 2020 Best Student Paper Competition).
Nathan Kallus, Xiaojie Mao, Angela Zhou. Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination. Management Science Special Section on Data-Driven Prescriptive Analytics, 2022. (UTD 24期刊, Featured Article in Management Science Vol 68 Issue 3 with invited review at https://www.informs.org/Blogs/ManSci-Blogs/Management-Science-Review/If-You-Can-t-Measure-It-Bound-It-Credibly-Auditing-Algorithms-for-Fairness2).
Nathan Kallus, Xiaojie Mao, Angela Zhou. Interval Estimation of Individual-Level Causal Effects Under Unobserved Confounding. The 22nd International Conference on Artificial Intelligence and Statistics, 2019.
Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, Madeleine Udell. Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved. ACM FAT* 2019: Conference on Fairness, Accountability, and Transparency in Machine Learning.
Nathan Kallus, Xiaojie Mao, Madeleine Udell. Causal Inference with Noisy and Missing Covariates via Matrix Factorization. The 32nd Annual Conference on Neural Information Processing Systems, 2018. (中國計算機學會A類會議)